
CS 61A Structure and Interpretation of Computer Programs
Summer 2018 Final Solutions

INSTRUCTIONS

• You have 3 hours to complete the exam individually.

• The exam is closed book, closed notes, closed computer, and closed calculator, except for two hand-written
8.5" × 11" crib sheets of your own creation.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last (Family) Name

First (Given) Name

Student ID Number

Berkeley Email

Teaching Assistant

Alex Stennet

Alex Wang

Cameron Malloy

Chae Park

Chris Allsman

Christina Zhang

Derek Wan

Erica Kong

Griffin Prechter

Jemin Desai

Jennifer Tsui

Jenny Wang

Kevin Li

Nancy Shaw

Exam Room and Seat

Name of the person to your left

Name of the person to your right

All the work on this exam is my
own. (please sign)

POLICIES & CLARIFICATIONS

• You may use built-in Python functions that do not require import, such as min, max, pow, and abs.

• For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

2

1. (11 points) Jennifer and Chae’s Cat Cafe

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter when
the expression is evaluated. The output may have multiple lines. Each expression has at least one line of output.

• If an error occurs, write Error, but include all output displayed before the error.

• To display a function value, write Function.

• If an expression would take forever to evaluate, write Forever.

Assume that you have started python3 (not ipython or other variants) and executed the code shown on the left
first, then you evaluate each expression on the right in the order shown.

1 class Animal:
2 def __init__(self, parent):
3 self.parent = parent
4 is_alive = False
5 def __repr__(self):
6 return 'cookie'
7 def __str__(self):
8 return 'I am an animal'
9

10 class Cat(Animal):
11 is_alive = True
12
13 def meow(self):
14 def meower(self):
15 if self.is_alive:
16 return 'meower'
17 return 'I am a ghost!'
18 print('meow')
19 return meower
20
21 def curiosity(self, cat):
22 print('adventure')
23 cat.is_alive = not self.is_alive
24 return cat
25
26 class CalicoCat(Cat):
27 def __repr__(self):
28 return 'brownie'
29
30 def meow(self):
31 print('purr')
32 return Cat.meow(self)
33
34 rachel = Cat(None)
35 aaron = CalicoCat(rachel)
36 amy = Cat(None)

Expression Interactive Output

print(4, 5) + 1
4 5
Error

print(aaron) I am an animal

CalicoCat.meow(rachel)
purr
meow
Function

Animal.meow(aaron) Error

aaron.parent.curiosity(amy)
adventure
cookie

Cat.meow = rachel.meow() meow
amy.meow() ’I am a ghost!’

Name: 3

2. (8 points) Jemin Watches Some Soccer
Fill in the environment diagram that results from executing the code
to the right until the entire program is finished, an error occurs, or all
frames are filled. You may not need to use all of the spaces or frames.
A complete answer will:

• Add all missing names and parent annotations to all local
frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

1 fa = 0
2
3 def fi(fa):
4 def world(cup):
5 nonlocal fa
6 fa = lambda fi: world or fa or fi
7 world = 0
8 if (not cup) or fa:
9 fa(2022)

10 fa, cup = world + 4, fa
11 return cup(fa)
12 return fa(cup)
13 return world
14
15 won = lambda opponent, x: opponent(x)
16 france = won(fi(fa), 2018)

Global frame

fa 0

fi

won

france 4

f1: fi [parent:Global]

fa 4

world

Return Value

f2: λ [parent:Global]

opponent

x 2018

Return Value 4

f3: world [parent:f1]

cup

world 0

Return Value 4

f4: λ [parent:f3]

fi 2022

Return Value

f5: λ [parent:f3]

fi 4

Return Value 4

func fi(fa) [parent=Global]

func λ(opponent, x) [parent=Global]

func world(cup) [parent=f1]

func λ(fi) [parent=f3]

4

3. (11 points) While You Evaluate These Function Calls-man, Don’t Make An Error-ca

(a) (8 pt) For each of the expressions in the table below, write the output displayed by the interactive Scheme
interpreter when the expression is evaluated. The output may have multiple lines. Each expression has at least
one line of output.

• If an error occurs, write Error, but include all output displayed before the error.
• To display a procedure value, write Procedure.
• If an expression would take forever to evaluate, write Forever.

Assume that you have executed the code shown on the left first, then you evaluate each expression on the right
in the order shown.

1 (define b 7)
2
3 (define hermish '(1 (* 2 3) b (+ 4 5)))
4
5 (define (shide x y)
6 (lambda (z) (print z) (if x y z)))
7
8 (define jericho
9 (lambda (a) (set! b a) (+ a b)))

10
11 (define asli hermish)
12
13 (define (jacob lst)
14 (cond
15 ((null? lst) lst)
16 ((eq? (car lst) 5)
17 (print 'hello)
18 (list (+ 1 2)))
19 (else
20 (set-car! lst (eval (car lst)))
21 (jacob (cdr lst)))))

Expression Interactive Output
(+ (length '(3 4)) 1) 3

((shide 0 b) 'amy)
amy
7

(jericho 5) 10
(jacob hermish) ()
asli (1 6 5 9)

(b) (3 pt) Draw a box-and-pointer diagram for the state of the Scheme pairs after executing the block of code
below. Please erase or cross out any boxes or pointers that are not part of a final diagram. This code does not
error. We’ve provided the diagram for ex as an example. The built-in procedure length returns the length of
a Scheme list.

1 (define ex '(1 2 3))
2
3 (define (f x)
4 (if (= x 0)
5 5
6 (list x (f (- x 1)))))
7
8 (define kate (f 3))
9

10 (define (g x)
11 (if (list? x) (length x) x))
12
13 (define ajan (map g '(1 (2 (3)))))

ex

kate

ajan

1 2 3

3

2

1 5

1 2

Name: 5

4. (3 points) BSTs

The following questions reference the BST class and diagrams provided below.

class BST:

Other methods not shown

def __contains__(self, e):
if self.label == e:

return True
elif e > self.label and self.right is not BST.empty:

return e in self.right
elif self.left is not BST.empty:

return e in self.left
return False

tree1

2

3

4

5

tree2

2

3

4

5

tree3

5

3 7

2 4 6 8

(a) (1 pt) Of tree1 and tree2, which are valid BSTs?
Both # tree1 only tree2 only # Neither

(b) (1 pt) What is the runtime of the __contains__ method of the BST class with respect to n, the number of
nodes in tree3?
Θ(1) Θ(log n) # Θ(

√
n) # Θ(n) # Θ(n2) # Θ(2n)

(c) (1 pt) What is the runtime of the __contains__ method of the BST class with respect to h, the height of
tree3?
Θ(1) # Θ(log h) # Θ(

√
h) Θ(h) # Θ(h2) # Θ(2h)

6

5. (9 points) Kevin and Griffin’s Lunch Order

Kevin and Griffin are getting lunch before their sections. They each want to buy a main item, a snack, and a soft
drink while staying within their budget.

(a) (2 pt) We represent the various lunch items with the Food class and its subclasses. There’s a sale on snacks
right now, so all snacks cost 40% less than their listed price. Berkeley charges a 5% tax on soft drinks, so those
cost more than their base cost. Fill in the cost method for the Snack and SoftDrink classes.
For full credit, you must not hard-code the snack discount or the soda tax, in case they change in the future.

class Food:
def __init__(self, name, base_cost):

self.name = name
self.base_cost = base_cost

def cost(self):
return self.base_cost

class Main(Food):
type = "main"

class Snack(Food):
type = "snack"
discount = 0.4

def cost(self):
"""
>>> chips = Snack("chips", 1)
>>> chips.cost()
0.6
"""
return self.base_cost * (1 - Snack.discount)

class SoftDrink(Food):
type = "softdrink"
sugar_tax = 0.05

def cost(self):
"""
>>> cola = SoftDrink("cola", 2)
>>> cola.cost()
2.1
"""
return self.base_cost * (1 + SoftDrink.sugar_tax)

Name: 7

(b) (5 pt) Write three_sum_budget, which takes in three nonempty lists of positive numbers and a number n.
This function should return the maximum sum less than or equal to n of one element from each of lst1, lst2,
and lst3. If staying less than or equal to n is not possible, return 0.

def three_sum_budget(lst1, lst2, lst3, n):
"""Find the maximum sum <= n of one element from each of lst1, lst2, and lst3.
>>> three_sum_budget([1, 2, 3], [6, 8, 10], [4], 100)
17
>>> three_sum_budget([1, 2, 4], [6, 8, 10], [2], 15)
14
>>> three_sum_budget([1, 2, 3], [4, 5, 6], [1, 2, 4], 6)
6
"""
def helper(lst1, lst2, lst3, total):

if total > n:
return 0

elif lst1 == "done":
return total

options = []
for item in lst1:

options.append(helper(lst2, lst3, "done", total + item))
return max(options)

return helper(lst1, lst2, lst3, 0)

(c) (2 pt) Now let’s put it all together. Implement lunch_cost, which takes in a list of foods (each one is either a
Main, a Snack, or a SoftDrink) and a budget. Return the maximum you’ll spend if you buy one of each item
and your total cost does not exceed your budget. Use the functions and classes you wrote in parts (a) and (b).

def lunch_cost(foods, budget):
"""
>>> lobster = Main('Lobster Tail', 25)
>>> hotdog = Main('Hotdog', 5)
>>> cider = SoftDrink('Sparkling Cider', 10)
>>> cola = SoftDrink('Cola', 3)
>>> fries = Snack('French Fries', 3)
>>> foods = [lobster, hotdog, cider, cola, fries]
>>> lunch_cost(foods, 100)
37.3
>>> lunch_cost(foods, 25)
17.3
"""
def costs_by_type(type):

return [food.cost() for food in foods if food.type == type]

mains = costs_by_type("main")
snacks = costs_by_type("snack")
drinks = costs_by_type("softdrink")
return three_sum_budget(mains, snacks, drinks, budget)

8

6. (8 points) Christreena Finds Longer Paths

On HW 5, you wrote long_paths, which found all paths of a certain length that extend from the root to a leaf.
Now, write longer_paths, which removes the restrictions that paths must begin at the root and end at a leaf.

The length of a path is the number of edges in the path (i.e. one less than the number of nodes in the path). A
path may begin and end at any node. Paths must always go from one node to one of its branches; they may not go
upwards. You do not need to worry about the order of the different paths.

The Tree class is provided below.

whole

left right
0

1 8 5

2 3

4

6

7

class Tree:
def __init__(self, label, branches=[]): def is_leaf(self):

self.label = label return not self.branches
self.branches = list(branches)

def longer_paths(t, n):
"""Return a list of all paths in T with length at least N. Note that a path
may begin at any node and end at any node. Each subsequent element must be
from a label of a branch of the previous value's node.
>>> left = Tree(1, [Tree(2), Tree(3, [Tree(4), Tree(5)])])
>>> right = Tree(6, [Tree(7, [Tree(8)])])
>>> whole = Tree(0, [left, Tree(9), right])
>>> for path in longer_paths(whole, 2):
... print(path)
...
[0, 1, 2]
[0, 1, 3]
[0, 1, 3, 4]
[0, 1, 3, 5]
[1, 3, 4]
[1, 3, 5]
[0, 6, 7]
[0, 6, 7, 8]
[6, 7, 8]
"""
def helper(t, n, can_start_path):

paths = []
if n <= 0:

paths.append([t.label])
for b in t.branches:

for subpath in helper(b, n - 1, False):
paths.append([t.label] + subpath)

if can_start_path:
paths.extend(helper(b, n, True))

return paths

return helper(t, n, True)

Name: 9

7. (7 points) Streams and Jennyrators

(a) (1 pt) Write generate_constant, a generator function that repeatedly yields the same value forever.

def generate_constant(x):
"""A generator function that repeats the same value X forever.
>>> two = generate_constant(2)
>>> next(two)
2
>>> next(two)
2
>>> sum([next(two) for _ in range(100)])
200
"""
while True:

yield x

(b) (3 pt) Now implement black_hole, a generator that yields items in seq until one of them matches trap, in
which case that value should be repeated yielded forever. You may assume that generate_constant works.
You may not index into or slice seq.

def black_hole(seq, trap):
"""A generator that yields items in SEQ until one of them matches TRAP, in
which case that value should be repeatedly yielded forever.
>>> trapped = black_hole([1, 2, 3], 2)
>>> [next(trapped) for _ in range(6)]
[1, 2, 2, 2, 2, 2]
>>> list(black_hole(range(5), 7))
[0, 1, 2, 3, 4]
"""
for item in seq:

if item == trap:
yield from generate_constant(trap)

else:
yield item

10

(c) (3 pt) Now let’s implement this in Scheme using streams. black-hole takes in an infinite stream of numbers
and a value trap. It should return a stream that contains the items of stream until one of its elements matches
trap, in which case the stream should repeat that value forever.

scm> (define (prefix s k) (if (= k 0) nil (cons (car s) (prefix (cdr-stream s) (- k 1)))))
prefix
scm> (define (naturals start) (cons-stream start (naturals (+ start 1))))
naturals
scm> (prefix (black-hole (naturals 1) 3) 8)
(1 2 3 3 3 3 3 3)
scm> (prefix (black-hole (naturals 5) 3) 5)
(5 6 7 8 9)

(define (black-hole stream trap)
(cons-stream

(car stream)
(if (equal? (car stream) trap)

(black-hole stream trap)
(black-hole (cdr-stream stream) trap))))

8. (10 points) Nan-scheme Writes Cam-acros

In Python, we can do arithmetic using infix notation, where the operator goes between two operands, e.g. 3 + 4.
In Scheme, we have to use prefix notation for all call expressions, e.g. (+ 3 4).

Let’s add support for infix notation in Scheme!

(a) (2 pt) First, write the helper function skip, which skips the first n items in a list, returning the rest. For full
credit, your solution must be tail recursive. You may assume that n is non-negative.

scm> (skip 2 '(1 2 3 4))
(3 4)

(define (skip n lst)
(if (or (= n 0) (null? lst))

lst
(skip (- n 1) (cdr lst))))

Name: 11

(b) (6 pt) Now let’s write infix, which takes in a list containing some arithmetic in infix notation and evaluates
it. You only need to support addition and multiplication, but you do need to take the order of operations and
parentheses into account. You may use skip, as well as cadr and caddr.

1
2
3
4

5

6
7

8

9

10
11

12

13

scm> (infix '(5)) scm> (infix '(2 + 3)) scm> (infix '(2 * (3 + 6)))
5 5 18
scm> (infix '(2 * 3)) scm> (infix '(2 * 3 + 6)) scm> (infix '(2 + 3 * 6))
6 12 20

(define (infix expr)
(cond

((not (pair? expr)) expr) ; a single value
((or (equal? (car expr) '*) (equal? (car expr) '+)) (eval expr)) ; already in prefix form

((null? (cdr expr)) (infix (car expr)))

(else
(define left (infix (car expr)))

(define right (infix (caddr expr)))

(define operator (cadr expr))

(cond
((equal? operator '+) (+ left (infix (skip 2 expr))))

((equal? operator '*) (infix (cons (* left right)

(skip 3 expr))))))

(c) (2 pt) infix is great, but it only works on number literals. If we try to reference names, it errors.

scm> (define x 4)
x
scm> (infix '(x + 3))
Error: x is not a number

We can fix this by making a macro instead. Let’s say we define infix-macro as:

(define-macro (infix-macro . expr) (infix expr))

Unfortunately, this doesn’t quite work. What changes would need to be made to the code in part (b) so that
infix-macro works like the tests below?

scm> (infix-macro x + 3) scm> (infix-macro 4 + (x + 3) * 5)
7 39

Please describe the specific changes you’d make and why you’d make them, mentioning line numbers.

Change (eval expr) in Line 4 to be expr. Change the blank in Line 12 from (* left right) to
`(* ,left ,right). Likewise, change the addition in Line 11 to be `(+ ,left ,(infix (skip 2 expr))). We
do this because we want macros to return code that can then be evaluated in the calling environment.
One point will be awarded for any answer that mentions that we need infix to return code, since macros need to
return code.
The other point will be awarded if at least two of Lines 4, 11, and 12 has the correct new code (or at least correct
relative to what the student actually wrote in part b).

12

9. (6 points) Birthday Query Language

Tiffany’s birthday is coming up and the CS 61A staff wants to throw her a party! She’s put the times she’s available
in a SQL table called party_times. The party will last 2 hours. Unfortunately, all of the times Tiffany is available
conflict with some staff member’s section. Each staff member’s section is listed in sections.

The time column of both tables refers to the number of hours after noon that a section or party starts at. The
length column refers to the length of a section in hours. The tables below are not complete.

party_times
time
2
4
5.5
7
...

sections
staff_member time length

"Daniel" 4.5 1
"Jemmy" 3 1
"Lauren" 2.5 1
"Wenyuan" 1 2

...

(a) (3 pt) First, let’s make a table called available which has a row for every combination of a staff member and
a time slot for which that staff member is available. Note that a staff member can be available for multiple
times and there can be multiple staff members available for a given time.
A staff member is available for a timeslot if their section does not conflict with any part of it. If their section
ends at the same time the party starts (or vice versa), the staff member can still attend the party. You may
assume that each staff member only has 1 section on the day of the party.
For example, Lauren could attend a party at 4, since her section ends at 3.5, but could not attend a party at
2, since her section would overlap with it.

CREATE TABLE available AS
SELECT staff_member AS staff_member, party_times.time AS time

FROM sections, party_times
WHERE sections.time >= party_times.time + 2 OR

sections.time + sections.length <= party_times.time;

(b) (1 pt) Uh, oh! Tiffany can no longer make the party time starting at 2. Write a single SQL statement that
will mutate the available table to remove any availabilities listed for this time.

DELETE FROM available WHERE time = 2;

(c) (2 pt) Now let’s find out what time the most staff members can make. Create a table called best_times that
lists each party time and the number of staff members that can make it in descending order.

CREATE TABLE best_times
SELECT time, count(*) FROM available
GROUP BY time ORDER BY count(*) DESC;

Name: 13

10. (2 points) Alex-tra Lectures

There are three problems here: one for each of the extra lectures. Each problem is worth 1 points, but you can only
earn a maximum of 2 points on this problem, so you only need to know two answers.

(a) (1 pt) Logic Programming

Why are logic programming languages (like Logic or Prolog) less efficient than SQL?
Limit your response to 15 words or less.

They allow arbitrary relations while SQL requires data and queries to fit a particular structure.

(b) (1 pt) Dynamic Programming

What is the main goal of memoization and dynamic programming? Limit your response to 10 words or less.

Do not perform repeated work

(c) (1 pt) Natural Language Processing

What does a leaf represent in a natural language syntax tree?

 a single word # a noun phrase # a verb phrase # a subordinate clause # a sentence

11. (0 points) Perfectly Balanced, As All Things Should Be

In this extra credit problem, you may choose one of the four instructors for the course. Your goal as a class is to
evenly distribute your selections across the four options. If each instructor receives at least 20% of the votes, then
everyone who properly marked an instructor for this problem will receive one (1) extra credit point.

You will not receive extra credit if you leave this problem blank, mark more than one bubble, or your selection is
not clear.

James Uejio

Jen Thakar

Mitas Ray

Tammy Nguyen

12. (0 points) Wan More Thing

Thank you all for a fantastic summer!

We’ve hidden the names of all the instructors, TAs, and tutors somewhere within the exam. Can you find them all?

This isn’t worth extra credit or anything. Obviously don’t do this until you’ve finished the exam.

14

No more questions.

