
CS 61A Structure and Interpretation of Computer Programs
Summer 2018 Mock Final Solutions

INSTRUCTIONS

• You have 80 minutes to complete the exam individually.

• The exam is closed book, closed notes, closed computer, and closed calculator, except for two hand-written
8.5" × 11" crib sheet of your own creation.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last (Family) Name

First (Given) Name

Student ID Number

Berkeley Email

Teaching Assistant

Alex Stennet

Alex Wang

Cameron Malloy

Chae Park

Chris Allsman

Christina Zhang

Derek Wan

Erica Kong

Griffin Prechter

Jemin Desai

Jennifer Tsui

Jenny Wang

Kevin Li

Nancy Shaw

All the work on this exam is my
own. (please sign)

POLICIES & CLARIFICATIONS

• You may use built-in Python functions that do not require import, such as min, max, pow, and abs.

• For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• The topics covered in this mock exam are not comprehensively representative of the topics that will appear on
the actual final exam.

2

1. (6 points) Retrieve the output

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter when
the expression is evaluated. The output may have multiple lines. Each expression has at least one line of output.

• If an error occurs, write Error, but include all output displayed before the error.

• To display a function value, write Function.

• If an expression would take forever to evaluate, write Forever.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have started python3 and executed the code shown on the left first, and then you evaluate each
expression on the right in the order shown. Expressions evaluated by the interpreter have a cumulative effect.

class Retriever:
height = 5
def __init__(self, boy):

self.good = boy
def bark(self):

print('Woof!')
return self.height - 2

def fetch(self, other):
return 'Fetch!'

def __str__(self):
return 'I retrieve things'

class Golden(Retriever):
name = 'Golden'
height = 6
def __init__(self, fluffy, boy):

self.fluffy = fluffy
self.boy = boy

def bark(self, dog):
print(dog.name + ' says hi!')
return Retriever.bark(self)

def sniff(self, friend):
for _ in range(self.boy):

print(friend)

class Labrador(Retriever):
name = 'Labrador'
height = 4
def __init__(self, name):

self.name = name
self.d = Golden.bark(self, self)

def fluffy(self, fluff):
return fluff

def fetch(self, other):
return self.fluffy(other)

def __repr__(self):
return 'A pup!'

goldie = Golden(lambda x: 10, 5)

Expression Interactive Output

print(4, 5) + 1
4 5
Error

goldie.fluffy(goldie) 10
goldie.fetch(Labrador) ’Fetch!’

lucy = Labrador('Lucy')
Lucy says hi!
Woof!

lucy.fetch(Labrador('Olly'))
Olly says hi!
Woof!
A pup!

goldie.boy = lucy.d
I retrieve things
I retrieve things

goldie.sniff(lucy.fetch(goldie))

Retriever.bark(goldie)
Woof!
4

Name: 3

2. (6 points) Schemin’

For each of the expressions in the table below, write the output displayed by the interactive Scheme interpreter when
the expression is evaluated. The output may have multiple lines. Each expression has at least one line of output.

• If an error occurs, write Error, but include all output displayed before the error.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have started our implementation of the Scheme interpreter with python3 scheme (or, equivalently,
the interpreter at scheme.cs61a.org) and executed the code shown on the left first, and then you evaluate each
expression on the right in the order shown. Expressions evaluated by the interpreter have a cumulative effect.

(define (mischief x f g . args)
(if (even? x)

(apply f args)
(apply g args)

)
)

(define (mystery a b)
(if (= a b)

'okay
(begin (print 'hmmm)

(mystery (- a 1) (+ b 1)))
)

)

(define s (cons-stream 1
(cons-stream (mystery 5 1)

nil)))

Expression Interactive Output

(+ (print 4) 1)
4
Error

(mystery 3 1)
hmmm
okay

(mischief (+ 1 3) cons list 1 2) (1 . 2)
(cons (cons 6 (cons 1 nil)) '(a)) ((6 1) a)
`(list ,(cons 1 2) (list 3 4)) (list (1 . 2) (list 3 4))

(define rest (cdr-stream s))
hmmm
hmmm
rest

(car (cdr-stream s)) okay

3. (4 points) Zero

Write a macro called zero-cond that takes in a list of clauses, where each clause is a two-element list containing
two expressions, a predicate and a corresponding result expression. All predicates evaluate to a number. The macro
should evaluate each predicate and return the value of the expression corresponding to the first true predicate,
treating 0 as a false value.

scm> (zero-cond
((0 'result1)
((- 1 1) 'result2)
((* 1 1) 'result3)
(2 'result4)))

result3

(define-macro (zero-cond clauses)
(cons 'cond

(map (lambda (clause)
(cons (not (= 0 (eval (car clause)))) (cdr clause)))

clauses)))

4

4. (6 points) DoubleTree

The following questions use this implementation of the Tree class:

class Tree:
def __init__(self, label, branches=[]): def __str__(self):

for b in branches: """ Represents trees in a readable format.
assert isinstance(b, Tree) >>> print(Tree(1, [Tree(2)]))

self.label = label 1
self.branches = list(branches) 2

def is_leaf(self): """
return not self.branches ...

(a) (2 pt) Fill in the definition of copy_tree below, which takes in a Tree instance t and returns a new tree object
that contains the same items as t.

def copy_tree(t):
return Tree(t.label, [copy_tree(b) for b in t.branches])

(b) (4 pt) Now, use copy_tree to write the function double_tree. This function takes in a tree and mutates it
by duplicating every branch at every level in the tree. Assume that the copy_tree function works as expected,
regardless of what you wrote above.

def double_tree(t):
[double_tree(b) for b in t.branches]
t.branches.extend([copy_tree(b) for b in t.branches])

Name: 5

5. (6 points) Don’t repeat yourself

(a) (2 pt) Implement repeater, which takes in a list of positive numbers and returns a list where every number
in the original list except for the first number appears a number of times equivalent to the previous number.

scm> (repeater nil)
()
scm> (repeater '(1 2 3))
(2 3 3)
scm> (repeater '(4 1 2 5))
(1 1 1 1 2 5 5)

(define (repeater nums)
(define (repeat nums n)

(cond ((null? nums) nil)
((= n 0) (repeat (cdr nums) (car nums)))
(else (cons (car nums) (repeat nums (- n 1))))))

(repeat nums 0))

(b) (4 pt) Implement zip-tail, which is a tail recursive procedure that takes in two lists a and b and returns a
single list containing two-element lists of co-indexed elements from a and b. If one list is shorter than the other,
the zipped list’s length is that of the shorter list. Your solution should be tail recursive.

scm> (zip-tail '(1 2 3) '(4 5 6))
((1 4) (2 5) (3 6))
scm> (zip-tail '(c 6 a) '(s 1 ! hello world))
((c s) (6 1) (a !))

Hint: Use the built-in append procedure, which you can assume is tail recursive, to concatenate two lists
together. For example:

scm> (append '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)

(define (zip-tail a b)
(define (zipper a b result)

(if (or (null? a) (null? b))
result
(zipper (cdr a) (cdr b) (append result (list (list (car a) (car b)))))))

(zipper a b '()))

6

6. (7 points) Teaqual

Chae and Jennifer decide to open a tea house, called ADTeas, where customers can build their own custom drinks.
A drink is defined as some combination of a tea from the teas table as the base, a syrup from the syrups table,
and a topping from the toppings table.

Each tea variety belongs to some tea type, either green, black, oolong, or white. Each syrup has a popularity level
from 1-5 (5 being the most popular). Each topping has a particular tea type that it complements the most as well
as a popularity level from 1-5.

teas
tea tea_type

jasmine green
high mountain oolong
silver needle white

assam black
osmanthus oolong
gong fu black

syrups
syrup popularity
honey 3
mango 4
peach 5

passionfruit 4
grapefruit 2

toppings
topping tea_type popularity

lychee jelly green 4
tapioca pearl black 5
milk pudding oolong 4
red bean green 2
grass jelly white 3

(a) (2 pt) Tammy needs help deciding what drink to get at ADTeas. She has no preference for the tea base or syrup,
but only wants drinks with toppings that complement the type of the tea base and with combinations of toppings
and syrups that have a combined average popularity of at least 4.5. Create a table called tammys_drinks, which
contains all drinks that Tammy would like given by some tea, a syrup, and a topping.

CREATE TABLE tammys_drinks AS
SELECT teas.tea AS tea, s.syrup AS syrup, top.topping AS topping

FROM teas, syrups AS s, toppings AS top
WHERE (top.popularity + s.popularity) / 2.0 >= 4.5

AND top.tea_type = teas.tea_type;

(b) (4 pt) Jennifer creates the table special_drinks to represent a special menu of popular drink combinations.
It has 4 columns, each representing a tea base for the drink, a syrup, a topping, and a popularity value,
which is the average of the popularity values of the topping and syrup in the drink.

CREATE TABLE special_drinks(tea, syrup, topping, popularity);

Tammy decides to have office hours at ADTeas and shares her drink choices with the students, which they love!
Insert one drink of each tea type from tammys_drinks into special_drinks. Specifically, for each tea type,
insert the drink that has the highest topping and syrup popularity average value out of all of the drinks of that
type in tammys_drinks. Assume there is at most one drink of each tea type that fits this description.

INSERT INTO special_drinks
SELECT d.tea, d.syrup, d.topping, MAX((t.popularity + s.popularity) / 2.0)

FROM tammys_drinks AS d, syrups AS s, toppings AS t
WHERE d.syrup = s.syrup AND d.topping = t.topping
GROUP BY t.tea_type;

(c) (1 pt) Chae notices that not many people are purchasing drinks with grass jelly and that red bean is becoming
more popular. She wants to remove grass jelly as an topping option to cut costs and raise red bean’s popularity
level to 3. Fill in the statements below to reflect this.

DELETE FROM toppings WHERE topping = 'grass jelly';
UPDATE toppings SET popularity = 3 WHERE topping = 'red bean';

