
Guerrilla Section 2: Higher Order Functions, Sequences, &

Recursion/Tree Recursion

Instructions

Form a group of 3-4. Start on Question 0. Check off with a lab assistant when everyone in your
group understands how to solve Question 0. Repeat for Question 1, 2, etc. ​You're not allowed
to move on from a question until you check off with a tutor. ​You are allowed to use any and
all resources at your disposal, including the interpreter, lecture notes and slides, discussion
notes, and labs. You may consult the lab assistants, ​but only after you have asked everyone
else in your group.​ ​The purpose of this section is to have all the students working
together to learn the material.

Higher Order Functions

Question 0
a)​ What do lambda expressions do? Can we write all functions as lambda expressions? In what
cases are lambda expressions useful?

b)​ For each of the following prompts, explain what is happening.:
>>> def square(x):
... return x * x

>>> square(4)

>>> square

>>> square = lambda x: x * x

c)​ Determine if each of the following will error:
>>> 1/0

>>> boom = lambda: 1/0

>>> boom()

Question 1
a)​ ​Express the following expressions using def statements:

i. ​pow = lambda x, y: x**y

ii.​ foo = lambda x: lambda y: lambda z: x + y * z

iii. ​compose = lambda f, g: lambda x: f(g(x))

b)​ Draw ​Environment Diagrams for the following lines of code
i. square = lambda x: x * x

higher = lambda f: lambda y: f(f(y))
higher(square)(5)

ii. a = (lambda f, a: f(a))(lambda b: b * b, 2)

Question 2
a)​ Express the following expressions using lambdas:

i. ​def square(x):
return x * x

ii. ​def sum_of_squares(x, y):

return x*x + y*y

iii. ​def hello_world():
 return "hello world!"
 hello_world()

b)​ What is displayed in the course of evaluating this expression?
cs61a = (lambda boring, difficult: difficult)((lambda tears: (tears, 2))(print(1)))

c)​ ​Challenge:​ Complete the given lambda expression so the second line evaluates to 2018.
You may only use the names two_thousand, two, k, eight, and teen and parentheses in your
expression (no numbers, operators, etc.). Hint: an environment diagram might be useful.

best_year = lambda four: lambda k: _________________________
best_year(9)(lambda eight: lambda teen: 2000 + eight + teen)

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises
in this section, and you have gotten checked off!

Question 3
Write a ​make_skipper​, which takes in a number ​n​ and outputs a function. When this function
takes in a number ​x​, it prints out all the numbers between 0 and x, skipping every ​n​th number
(meaning skip any value that is a multiple of n).

def make_skipper(n):

“””
>>> a = make_skipper(2)
>>> a(5)
1
3
5
“”””

EXTRA: Question 4
Write make_alternator which takes in two functions, f and g, and outputs a function. When this
function takes in a number ​x​, it prints out all the numbers between 1 and x, applying the function
f to every odd-indexed number and g to every even-indexed number before printing.

def make_alternator(f, g):

“””
>>> a = make_alternator(lambda x: x * x, lambda x: x + 4)

>>> a(5)
1
6
9
8
25

>>> b = make_alternator(lambda x: x * 2, lambda x: x + 2)

>>> b(4)

2

4

6

6

“””

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises

in this section, and you have gotten checked off!

Sequences

Question 0
Fill out what python would display at each step if applicable.

Note:​ (keep in mind list slicing creates a brand new list, does not modify existing list)
i.
>>> lst = [1, 2, 3, 4, 5]
>>> lst[1:3]

>>> lst[0:len(lst)]

>>> lst[-4:]

>>> lst[:3]

>>> lst[3:]

>>> lst[:]

ii. ​Hint: ​You can also specify the increment step-size for slicing. The notation is lst[start:end:step]
Hint:​ ​Remember that a negative step size changes the default start and end.

>>> lst[1:4:2]
>>> lst[0:4:3]

>>> lst[:4:2]

>>> lst[1::2]

>>> lst[::2]

>>> lst[::-1]

>>> lst2 = [6, 1, 0, 7]
>>> lst + lst2

>>> lst + 100

>>> lst3 = [[1], [2], [3]]
>>> lst + lst3

Question 1
Draw the environment diagram that results from running the code below

def reverse(lst):
 if len(lst) <= 1:
 return lst
 return reverse(lst[1:]) + [lst[0]]

lst = [1, [2, 3], 4]
rev = reverse(lst)

EXTRA: Question 2
Write ​combine_skipper ​, which takes in a function ​f ​ ​and list​ ​lst ​ and outputs a list. When
this function takes in a list ​lst ​, it looks at the list in chunks of four and applies ​f ​ to the first two
elements in every set of four elements and replaces the first element with the output of the
function ​f ​ applied to the two elements as the first value and the index of the second item of the
original two elements as the second value of the new two elements. ​f ​ takes in a list and outputs
a value. [Assume the length of ​lst ​ will always be divisible by four]

def combine_skipper(f, lst):

>>> lst = [4, 7, 3, 2, 1, 8, 5, 6]
>>> f = lambda l: sum(l)
>>> lst = combine_skipper(f, lst)
>>> lst
[11, 1, 3, 2, 9, 5, 5, 6]
>>> lst2 = [4, 3, 2, 1]
>>> lst2 = combine_skipper(f, lst2)
>>> lst2
[7, 1, 2, 1]

while n < len(lst) // 4:

return lst

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises
in this section, and you have gotten checked off!

Recursion

Question 0
a)​ What are three things you find in every recursive function?
1.

2.

3.

b)​ When you write a Recursive function, you seem to call it before it has been fully defined.
Why doesn't this break the Python interpreter? Explain in haiku if possible.

Question 1
Hint:​ Domain is the type of data that a function takes in as argument. The Range is the type of
data that a function returns.
E.g. the ​domain​ of the function ​square ​ is numbers. The ​range​ is numbers.

a)​ Here is a Python function that computes the nth Fibonnaci number. What's it's domain and
range? Identify those three things from ​Q0a

def fib(n):
 if ____________________
 return 0
 elif __________________
 return 1
 else:
 return fib(__________) + fib(__________)

Write out the recursive calls made when we do ​fib(4) ​ (this will look like an upside down tree).

b)​ What does the following ​cascade2 ​ do?

def cascade2(n):
 """Print a cascade of prefixes of n."""
 print(n)
 if n >= 10:
 cascade2(n//10)
 print(n)

c)​ Describe what does each of the following functions mystery and fooply do. Identify the three
things from Q0a:

>>> def mystery(n):
... if n == 0:
... return 0
... else:
... return n + mystery(n - 1)

>>> def foo(n):
... if n < 0:
... return 0
... return foo(n - 2) + foo(n - 1)

>>> def fooply(n):
... if n < 0:
... return 0
... return foo(n) + fooply(n - 1)

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises
in this section, and you have gotten checked off!

Question 2
Fill out the function has_seven using recursion

def has_seven(k):
 """Returns True if at least one of the digits of k is a 7, False
otherwise.

 >>> has_seven(3)
 False
 >>> has_seven(7)
 True
 >>> has_seven(2734)
 True
 >>> has_seven(2634)
 False
 >>> has_seven(734)
 True
 >>> has_seven(7777)
 True
 """

EXTRA Question 3
Mario needs to jump over a series of Piranha plants, represented as an integer composed of 0’s
and 1’s. Mario only moves forward and can either step (move forward one space) or jump (move
forward two spaces) from each position. How many different ways can Mario traverse a level
without stepping or jumping into a Piranha plant? Assume that every level begins with a 1
(where Mario starts) and ends with a 1 (where Mario must end up).

def mario_number(level):

"""
Return the number of ways that Mario can traverse the level,
where Mario can either hop by one digit or two digits each turn.
A level is defined as being an integer with digits where a 1 is
something Mario can step on and 0 is something Mario cannot step
on.

>>> mario_number(10101) # Hops each turn: (1, 2, 2)
1
>>> mario_number(11101) # Hops each turn: (1, 1, 1, 2), (2, 1, 2)
2
>>> mario_number(100101)# No way to traverse through level
0
"""

if _________________:

elif________________:

else:

EXTRA Challenge: Question 4
Implement the combine function, which takes a non-negative integer n, a two-argument function
f, and a number result. It applies f to the first digit of n and the result of combining the rest of the
digits of n by repeatedly applying f (see the doctests). If n has no digits (because it is zero),
combine returns result. Assume n is non negative.

from operator import add, mul

def combine (n , f , result):

"""
Combine the digits in n using f.
>>> combine (3, mul, 2) # mul (3, 2)
6
>>> combine (43, mul, 2) # mul (4, mul (3, 2))
24
>>> combine (6502, add, 3) # add (6, add (5, add (0, add (2 , 3)))
16
>>> combine (239, pow, 0) # pow (2, pow (3, pow (9, 0)))
8
"""

if n == 0:

return result
else:

return ___

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises
in this section, and you have gotten checked off!

