Guerrilla Section 4: Scheme

Instructions

Form a group of 3-4. Start on Question 1. Check off with a lab assistant when everyone in your
group understands how to solve Question 1. Repeat for Question 2, 3, etc. You are not
allowed to move on from a question until you check off with a lab assistant. You are
allowed to use any and all resources at your disposal, including the interpreter, lecture notes
and slides, discussion notes, and labs. You may consult the lab assistants, but only after you
have asked everyone else in your group. The purpose of this section is to have all the
students working together to learn the material.

Question 1: What would Scheme display?

What will Scheme output? Draw the box and pointer whenever the expression evaluates to
some pair or list.

scm> (cons 1 (cons 2 nil))

scm> (cons 1 (cons 2 '"()))

scm> (cons 1 2)

scm> '(2 3 5)

scm> '"(2 . (3 . (5 . (0)))

scm> (cons 1 (cons 2 3))

scm> (cons (cons (car '(1 2 3))
(list 2 3 4))

(cons 2 3))

scm> (car (cdr (cdr (car '"((1 2 a) a (4 5))))))



scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

scm>

(define (cddr x) (cdr (cdr x)))
(cddr '"((1 2) 3 (4 5)))

(define (caar x) (car (car x)))
(caar '"((1 2) 3 (4 5)))

"(((L . 2) . 3) 4 . (5. 6))
(define a (cons 1 (cons 2 nil)))
a

(set-car! a 3)

a

(set-cdr! (cdr a) (cons 4 5))

a

(define 1lst '(1 2 3))

(define wvar 4)

(set-cdr! 1st var)

1st



Question 2: Linked List Diagrams

Draw a box-and-pointer diagrams for the following commands:

a)(cons 's (cons 'n (cons 'a (cons (cons 'k (cons 'e nil)) (cons 'c
(cons 't (cons 'u (cons 's nil))))))))

b) scm> (define a '(1 (2 4) 3 (6)))
scm> a

C)scm> (set-cdr! (cdr (car (cdr a))) a)
scm> a



Question 3: Spot the Bug

scm> (sum-every-other '(1 2 3))

4

scm> (sum-every-other '())

0

scm> (sum-every-other '(1 2 3 4))

4

scm> (sum-every-other '(1 2 3 4 5))
9

Spot the bug(s), and rewrite the function so it behaves according to the above doctests.
(define (sum-every-other 1lst)
(cond ((null? 1lst) 1lst)
(else (+ (cdr 1lst)

(sum-every-other (caar 1lst)) ))))

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this
section, and you have gotten checked off!



Scheme Functions

Question 4: Reverse, HOF Scheme

a) Define reverse which takes in a list 1 st and returns a new list with the elements reversed.
You may want to use the built-in append function.

scm> (define a '(1 2 3))
a
scm> a
(1 2 3)
scm> (reverse a)
(3 2 1)
scm> a
(1 2 3)

b) Write a function 1ist-of-squares that takes in a Scheme list 1st and returns a list of the
squares of each elementin 1st.
scm> (list-of-squares '())
()
scm> (list-of-squares '(1 2 3 4 5))
(1 4 9 16 25)



Question 5: Add To All

The function add-to-all should behave like this:

> (add-to-all 1 '())

0)

> (add-to-all '"foo "((1 2) (3 4) (5 6)))
((foo 1 2) (foo 3 4) (foo 5 6))

Define add-to-all below. You may not need to use all of the provided lines.

(define (add-to-all item 1lst)

Question 6: Sublists

Define sublists, which takes in a Ist and returns all possible sublists. Order doesn’t matter.
Hint: use add-to-all.

scm> (sublists '"(1 2 3))
(O (3) (2) (2 3) (1) (L 3) (1 2) (1 2 3))



Question 7: Sixty-Ones

Define sixty-ones. Return the number of times that 1 follows 6 in the list.

scm> (sixty-ones '(4 6 1 6 0 1))

1

scm> (sixty-ones '(1 6 1 4 61 6 0 1))

2

scm> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))
3

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this
section, and you have gotten checked off!



Question 8: Replace X

a) Write a recursive function replace-x that takes in a Scheme list 1st and returns a new list
where every instance of x is replaced with y.

scm> (replace-x '() 1 2)

()

scm> (replace-x '"(1 2 3) 3 4)

(1L 2 4)

scm> (replace-x '"(5 7 8 7) 7 10)
(5 10 8 10)

scm> (replace-x '"(1 2 3 3 3) 3 5)
(L 2 55 5)

b) EXTRA Challenge Question: Rewrite replace-x such that it takes in a Scheme list 1st
and mutates it, replacing each instance of x with y.



Question 9: Sequence in List

Fill in the following function, which checks to see if a particular sequence of items, sub-1st,
can be found in another scheme list, 1st (the items must be in order, but not necessarily
consecutive). You may not need to use all of the lines to write your code.

scm> (seqg-in-1st '(1 2 3 4) '(1 3))

#t

scm> (seqg-in-1lst '(1 2 3 4) '(4 3 2 1))
#f

(define (seg-in-1st 1lst sub-1st)

(cond

STOP!



Make sure everyone in your group has finished and understands all exercises in this section,
and get checked off!



Extra Challenge Question 10: No Elevens

The function no-elevens should return a list of all distinct length-n lists of 1s and 6s that do
not contain 1 after 1.

> (no-elevens 2)

((6 6) (6 1) (1 6))

> (no-elevens 3)

((6 6 6) (6 6 1) (61 6) (1 6 6) (1 6 1))

> (no-elevens 4)

((6 6 6 6) (6 6 6 1) (6 6 1 6) (61 6 6) (61 6 1) (1 6 6 6) (1 6 6
1) (1 6 1 6))

Define no-elevens below. You may not need all of the lines provided below.

(define (no-elevens 1lst)

(cond










