
Guerrilla Section 4: Scheme

Instructions
Form a group of 3-4. Start on Question 1. Check off with a lab assistant when everyone in your
group understands how to solve Question 1. Repeat for Question 2, 3, etc. ​You are not
allowed to move on from a question until you check off with a lab assistant. ​You are
allowed to use any and all resources at your disposal, including the interpreter, lecture notes
and slides, discussion notes, and labs. You may consult the lab assistants, ​but only after you
have asked everyone else in your group. ​The purpose of this section is to have all the
students working together to learn the material.

Question 1: What would Scheme display?
What will Scheme output? Draw the box and pointer whenever the expression evaluates to
some pair or list.

scm> (cons 1 (cons 2 nil))

scm> (cons 1 (cons 2 '()))

scm> (cons 1 2)

scm> '(2 3 5)

scm> '(2 . (3 . (5 . ())))

scm> (cons 1 (cons 2 3))

scm> (cons (cons (car '(1 2 3))

 (list 2 3 4))

 (cons 2 3))

scm> (car (cdr (cdr (car '((1 2 a) a (4 5))))))

scm> (define (cddr x) (cdr (cdr x)))

scm> (cddr '((1 2) 3 (4 5)))

scm> (define (caar x) (car (car x)))

scm> (caar '((1 2) 3 (4 5)))

scm> '(((1 . 2) . 3) 4 . (5 . 6))

scm> (define a (cons 1 (cons 2 nil)))

scm> a

scm> (set-car! a 3)

scm> a

scm> (set-cdr! (cdr a) (cons 4 5))

scm> a

scm> (define lst '(1 2 3))

scm> (define var 4)

scm> (set-cdr! lst var)

scm> lst

Question 2: Linked List Diagrams
Draw a box-and-pointer diagrams for the following commands:

a) ​(cons 's (cons 'n (cons 'a (cons (cons 'k (cons 'e nil)) (cons 'c
(cons 't (cons 'u (cons 's nil))))))))

b) ​scm> (define a '(1 (2 4) 3 (6)))
 scm> a

c) ​scm> (set-cdr! (cdr (car (cdr a))) a)
 scm> a

Question 3: Spot the Bug
scm> (sum-every-other '(1 2 3))

4

scm> (sum-every-other '())

0

scm> (sum-every-other '(1 2 3 4))

4

scm> (sum-every-other '(1 2 3 4 5))

9

Spot the bug(s), and rewrite the function so it behaves according to the above doctests.
(define (sum-every-other lst)

 (cond ((null? lst) lst)

 (else (+ (cdr lst)

 (sum-every-other (caar lst))))))

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this
section, and you have gotten checked off!

Scheme Functions
Question 4: Reverse, HOF Scheme
a) ​Define ​reverse ​ which takes in a list ​lst ​ and returns a new list with the elements reversed.
You may want to use the built-in ​append ​ function.

scm> (define a '(1 2 3))

 a

scm> a

 (1 2 3)

scm> (reverse a)

 (3 2 1)

scm> a

 (1 2 3)

b) Write a function ​list-of-squares ​ that takes in a Scheme list ​lst ​ and returns a list of the
squares of each element in ​lst ​.
scm> (list-of-squares '())

 ()

scm> (list-of-squares '(1 2 3 4 5))

 (1 4 9 16 25)

Question 5: Add To All
The function ​add-to-all ​ should behave like this:
> (add-to-all 1 '())

()
> (add-to-all 'foo '((1 2) (3 4) (5 6)))

((foo 1 2) (foo 3 4) (foo 5 6))

Define ​add-to-all ​ below. You may not need to use all of the provided lines.

(define (add-to-all item lst)

)

Question 6: Sublists
Define ​sublists ​, which takes in a lst and returns all possible sublists. Order doesn’t matter.
Hint: use ​add-to-all ​.
scm> (sublists '(1 2 3))

 (() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

Question 7: Sixty-Ones
Define ​sixty-ones ​. Return the number of times that 1 follows 6 in the list.
scm> (sixty-ones '(4 6 1 6 0 1))

1

scm> (sixty-ones '(1 6 1 4 6 1 6 0 1))

2

scm> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))

3

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this
section, and you have gotten checked off!

Question 8: Replace X
a) Write a recursive function ​replace-x ​ that takes in a Scheme list ​lst ​ and returns a new list
where every instance of ​x ​ is replaced with ​y ​.
scm> (replace-x '() 1 2)

()

scm> (replace-x '(1 2 3) 3 4)

(1 2 4)

scm> (replace-x '(5 7 8 7) 7 10)

(5 10 8 10)

scm> (replace-x '(1 2 3 3 3) 3 5)

(1 2 5 5 5)

b) EXTRA Challenge Question: Rewrite ​replace-x ​such that it takes in a Scheme list ​lst
and mutates it, replacing each instance of ​x ​ with ​y ​.

Question 9: Sequence in List
Fill in the following function, which checks to see if a particular sequence of items, ​sub-lst,
can be found in another scheme list, ​lst ​ (the items must be in order, but not necessarily
consecutive). You may not need to use all of the lines to write your code.

scm> (seq-in-lst '(1 2 3 4) '(1 3))

#t

scm> (seq-in-lst '(1 2 3 4) '(4 3 2 1))

#f

(define (seq-in-lst lst sub-lst)

 (cond ___

___))

STOP!

Make sure everyone in your group has finished and understands all exercises in this section,
and get checked off!

Extra Challenge Question 10: No Elevens

The function ​no-elevens ​ should return a list of all distinct length-n lists of 1s and 6s that do
not contain 1 after 1.
> (no-elevens 2)

((6 6) (6 1) (1 6))

> (no-elevens 3)

((6 6 6) (6 6 1) (6 1 6) (1 6 6) (1 6 1))

> (no-elevens 4)

((6 6 6 6) (6 6 6 1) (6 6 1 6) (6 1 6 6) (6 1 6 1) (1 6 6 6) (1 6 6

1) (1 6 1 6))

Define ​no-elevens ​ below. You may not need all of the lines provided below.

(define (no-elevens lst)

 (cond __

 __

 __

 __

 __

)

)

