

Guerilla Section Week 6 Worksheet
Iterators & Generators, Streams, Tail Recursion, Interpreters

Instructions
Form a group of 3-4. Start on Question 1. Check off with a lab assistant when everyone in your
group understands how to solve the questions up to Checkpoint 1. Repeat for Checkpoint 2, 3,
etc. You're not allowed to move on from a checkpoint until you check off with a tutor. You
are allowed to use any and all resources at your disposal, including the interpreter, lecture notes
and slides, discussion notes, and labs. You may consult the lab assistants, but only after you
have asked everyone else in your group. The purpose of this section is to have all the
students working together to learn the material.

Iterators & Generators

1. Generator WWPD
>>> def g(n):

while n > 0:

if n % 2 == 0:

yield n

else:

print(‘odd’)

n -= 1

>>> t = g(4)

>>> t

>>> next(t)

>>> n

>>> t = g(next(t) + 5)

>>> next(t)

2. Write a generator function gen_inf that returns a generator which yields all the numbers in
the provided list one by one in an infinite loop. Write your solution to the right.

>>> t = gen_inf([3, 4, 5])

>>> next(t)

3

>>> next(t)

4

>>> next(t)

5

>>> next(t)

3

>>> next(t)

4

def gen_inf(lst):

3. Write a function nested_gen which, when given a nested list of iterables (including
generators) lst, will return a generator that yields all elements nested within lst in order.
Assume you have already implemented is_iter, which takes in one argument and returns
True if the passed in value is an iterable and False if it is not.

def nested_gen(lst):

'''

>>> a = [1, 2, 3]

>>> def g(lst):

>>> for i in lst:

>>> yield i

>>> b = g([10, 11, 12])

>>> c = g([b])

>>> lst = [a, c, [[[2]]]]

>>> list(nested_gen(lst))

[1, 2, 3, 10, 11, 12, 2]

'''

if _________________________________:

else:

4. Write a function that, when given an iterable lst, returns a generator object. This generator
should iterate over every element of lst, checking each element to see if it has been changed
to a different value from when lst was originally passed into the generator function. If an
element has been changed, the generator should yield it. If the length of lst is changed to a
different value from when it was passed into the function, and next is called on the generator,
the generator should stop iteration.

def mutated_gen(lst):

'''

>>> lst = [1, 2, 3, 4, 5]

>>> gen = mutated_gen(lst)

>>> lst[1] = 7

>>> next(gen)

7

>>> lst[0] = 5

>>> lst[2] = 3

>>> lst[3] = 9

>>> lst[4] = 2

>>> next(gen)

9

>>> lst.append(6)

>>> next(gen)

StopIteration Exception

'''

curr = ________

while __________________:

if ______________________:

break

else:

yield ____________________

return _____________________

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises

in this section, and you have gotten checked off for Check-in #1

Streams
1. Streams WWSD

scm> (define a (cons-stream 4 (cons-stream 6 (cons-stream 8 a))))

scm> (car a)

scm> (cdr a)

scm> (cdr-stream a)

scm> (define b (cons-stream 10 a))

scm> (cdr b)

scm> (cdr-stream b)

scm> (define c (cons-stream 3 (cons-stream 6)))

scm> (cdr-stream c)

What elements of a, b, and c have been evaluated thus far?

2. Write a function merge that takes in two sorted infinite streams and returns a new infinite
stream containing all the elements from both streams, in sorted order.

(define (merge s1 s2)

3. Write a function half_twos_factorial that returns a new stream containing all of the
factorials that contain the digit 2 divided by two. Your solution must use only the following
functions, without defining any additional ones. Likewise, any lambda expressions should
contain only calls to the following functions or built in functions.

; Returns a new Stream where each new value is the result of calling

; fn on the value in the stream s

(define (map-stream s fn)

(if (null? s) s

(cons-stream (fn (car s)) (map-stream (cdr-stream s)

fn))))

; Returns a new Stream containing all values in the stream s that

; satisfy the predicate fn

(define (filter-stream s fn)

(cond ((null? s) s)

((fn (car s)) (cons-stream (car s) (filter-stream

(cdr-stream s) fn)))

(else (filter-stream (cdr-stream s) fn))))

; Returns True if n contains the digit 2. False otherwise

(define (contains-two n)

(cond ((= n 0) #f)

((= (remainder n 10) 2) #t)

(else (contains-two (quotient n 10)))))

; Returns the factorial n

(define (factorial n)

(if (= n 0) 1 (* n (factorial (- n 1)))))

; Returns a stream of factorials

(define (factorial-stream)

(define (helper n)

(cons-stream (factorial n) (helper (+ n 1))))

(helper 1))

Fill in the skeleton below.

(define (half-twos-factorial)

 ___)

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises

in this section, and you have gotten checked off for Check-in #2

Tail Recursion

1. For the following procedures, determine whether or not they are tail recursive. If they are not,
write why they aren’t and rewrite the function to be tail recursive to the right.

; Multiplies x by y

(define (mult x y)

(if (= 0 y)

0

(+ x (mult x (- y 1))))

; Always evaluates to true

; assume n is positive

(define (true1 n)

(if (= n 0)

#t

(and #t (true1 (- n 1)))))

; Always evaluates to true

; assume n is positive

(define (true2 n)

(if (= n 0)

#t

(or (true2 (- n 1)) #f)))

; Returns true if x is in lst

(define (contains lst x)

(cond ((null? lst) #f)

((equal? (car lst) x) #t)

((contains (cdr lst) x) #t)

(else #f)))

2. Rewrite this function tail-recursively.

; Returns a list of pairs, the ith pair has item as its car and the

; ith element of lst as its cdr

(define (add-to-all item lst)

(if (null? lst)

lst

 (cons (cons item (car lst))

 (add-to-all item (cdr lst)))))

3. Implement sum-satisfied-k which, given an input list lst, a predicate procedure f which
takes in one argument, and an integer k, will return the sum of the first k elements that satisfy f.
If there are not k such elements, return 0.

; Doctests

scm> (define lst `(1 2 3 4 5 6))

scm> (sum-satisfied-k lst even? 2) ; 2 + 4

6

scm> (sum-satisfied-k lst (lambda (x) (= 0 (modulo x 3))) 10)

0

scm> (sum-satisfied-k lst (lambda (x) #t) 0)

0

(define (sum-satisfied-k lst f k)

Now implement sum-satisfied-k tail recursively.

(define (sum-satisfied-k lst f k)

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises

in this section, and you have gotten checked off for Check-in #3

4. Implement remove-range which, given one input list lst, and two nonnegative integers i and
j, returns a new list containing the elements of lst in order, without the elements from index i
to index j inclusive. You may assume j > i, and j is less than the length of the list. (Hint: you
may want to use the built-in append function, which returns the result of appending the items of
all lists in order into a single well-formed list.)

; Doctests

scm> (remove-range ‘(0 1 2 3 4) 1 3)

(0 4)

(define (remove-range lst i j)

Now implement remove-range tail recursively.

(define (remove-range lst i j)

Interpreters

1. For the following questions, circle the number of calls to scheme_eval and the number of
calls to scheme_apply:

scm> (+ 1 2)

3

Calls to scheme_eval : 1 | 3 | 4 | 6

Calls to scheme_apply : 1 | 2 | 3 | 4

scm> (if 1 (+ 2 3) (/ 1 0))

5

Calls to scheme_eval : 1 | 3 | 4 | 6

Calls to scheme_apply : 1 | 2 | 3 | 4

scm> (or #f (and (+ 1 2) ‘apple) (- 5 2))

apple

Calls to scheme_eval : 6 | 8 | 9 | 10

Calls to scheme_apply : 1 | 2 | 3 | 4

scm> (define (add x y) (+ x y))

add

scm> (add (- 5 3) (or 0 2))

2

Calls to scheme_eval : 12 | 13 | 14 | 15

Calls to scheme_apply : 1 | 2 | 3 | 4

3a) In Discussion 11, we introduced the Calculator language, which is a Scheme-syntax
language that currently includes only the four basic arithmetic operations: +, −, ∗, and /. In order
to evaluate Calculator expressions, we've defined calc_eval and calc_apply as follows.
Note that the basic arithmetic operations mentioned above are stored in the OPERATORS
dictionary, which maps operator names to built-in functions.

def calc_eval(exp):

 """Evaluates a Calculator expression represented as a Pair. """

 if isinstance(exp, Pair):

 return calc_apply(calc_eval(exp.first),

 list(exp.second.map(calc_eval)))

 elif exp in OPERATORS:

 return OPERATORS[exp]

 else: # Primitive expression

 return exp

def calc_apply(op, args):

 """Applies an operator to a Pair of arguments."""

 return op(*args)

For each of the following operations, select the function(s) that need to be modified in order to
implement this new features in the Calculator language introduced in Discussion 11. Please
justify your answer with 1-2 sentences.

The = operator. For example,(= 5 5) should evaluate to True.

calc_eval calc_apply Both Neither

The or operator. For example, (or (= 5 2) (= 2 2) (\ 1 0)) should evaluate to True.

calc_eval calc_apply Both Neither

Creating and calling lambda functions (Assume define has been implemented.) For example:
(define square (lambda (x) (* x x))) (square 4) should evaluate to 16.

calc_eval calc_apply Both Neither

3b) Now, try implementing the or operator. You may assume that the conditional operator <,
>, and = have already been implemented. To represent Scheme in Python, we are using Pair
objects. A pair has two instance attributes: first and second. For a Pair to be a well-formed list,
second is either a well-formed list or nil.

def calc_eval(exp):

if isinstance(exp, Pair):

__

__

__

__

__

__

__

__

 elif exp in OPERATORS:

 return OPERATORS[exp]

 else: # Primitive expression

 return exp

def eval_or(operands):

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises

in this section, and you have gotten checked off for Check-in #4

Challenge Problem
WWPD?

>>> def blue(purple, iter):

>>> black = next(iter)

>>> next(iter)

>>> yield from purple[black]

>>> purple = [1, 2, 3, 4]

>>> red = iter(purple)

>>> orange = iter(red)

>>> yellow = iter(purple)

>>> purple[0], purple[1], purple[3] = 3, purple, list(purple)

>>> next(red)

>>> purple[2] = list(orange)

>>> next(red)

>>> green = blue(purple, yellow)

>>> purple[3][1] = list(green)

>>> purple[3][1][0]

>>> next(yellow)[1]

>>> purple[3][2]

>>> purple[2][2][1][3]

CONGRATULATIONS!
You made it to the end of the worksheet! Great work :)

