
Guerrilla Section 7: ​Macros, SQL

Instructions
Form a group of 3-4. Start on Question 1. Check off with a staff member when everyone in your
group understands how to solve the questions up to the first checkpoint. Repeat for the second
checkpoint, the third checkpoint, and so on. ​You're not allowed to move on after a checkpoint
until you check off with a staff member. ​You are allowed to use any and all resources at your
disposal, including the interpreter, lecture notes and slides, discussion notes, and labs. You may
consult the staff members, ​but only after you have asked everyone else in your group.​ ​The
purpose of this section is to have all the students working together to learn the material.

SQL

We will be working with a Facebook-like website called Fakebook. The data we will be using will be
in ​fakebook.sql (Google Drive link)​. Load it in your interpreter with

sqlite> .read fakebook.sql

OR, if you don’t have sqlite3 installed, you can use an ​online SQL interpreter​ to test your solutions. If
you’re using sqlite3, edit your queries in some text editor (e.g. Sublime) and read them in so you can
easily change them. For example, the query ​SELECT * FROM people​ will allow you to view all
contents of the ​people​ table.

There are four tables in the provided Fakebook data, summarized below:

Table Name and Columns Table Information Description:
Each row represents...

people(name, age, state, hobby) a person on Fakebook

posts(post_id, poster, text, time) a post with its creator and creation time (in
minutes, starting at 0)

likes(post_id, name, time) a like: post_id of the post that was liked, name
of person who liked the post, and time (in
minutes) of like

requests(friend1, friend2) a friend request from friend1 to friend2

The first two rows of the ​people​ table:

name age state hobby

Carolyn 52 Florida karaoke

https://drive.google.com/file/d/0B-Wxv6AATWZHbWY1ejVZWHZhZWc/view
http://kripken.github.io/sql.js/GUI/

Dan 47 Maine disc golf

The first two rows of the ​posts​ table:

post_id poster text time

1 Mike Scorpions 104

2 Jenn Jetskis 124

The first two rows of the ​likes​ table:

post_id name time

1 Kelly 105

1 Mike 108

The first two rows of the ​requests​ table:

friend1 friend2

Carolyn Joaquin

Carolyn Kelly

Question 1: Fill in the blanks! (Part I)
Fill in the table below with the query that would produce the expected output

Desired Information Expected Output Query

The name and age of
each person on
Fakebook who is 26
years old or younger

Hali|25
Jenn|22
Joe|25
Lindsey|24
Rodney|24

The name of the poster
and the time of each
post on Fakebook
before minute 230

Mike|104
Jenn|124
So|134
Nina|229

The names of users
who have liked their
own post

Mike
Vince
Jenn
Mike
Shirin
Vince
Rodney
Max
Rodney
Mike
Will

Question 2: Friend Requests
The requests table stores all requests from one person to another. Two people are only friends if
both people requested to be friends with the other. Create a table friends that has two columns
(friend1 and friend2) that contains the names of each friend pairing. For example, if Hali sends a
friend request to Joe and Joe sends a friend request to Hali, both Joe|Hali and Hali|Joe should
appear in the table.

CREATE TABLE friends AS

 ​ ​SELECT __

 ​FROM __

 ​WHERE​ ​__

If you have created the table correctly, the sample query below should work.

> select * from friends where friend1 = "Hali";
Hali|Jenn
Hali|Joe
Hali|Shirin

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this

section, and you have gotten checked off for ​Check-in #1

Question 3: Write More Queries!
Recall that the aggregate functions MAX, MIN, COUNT, and SUM return the maximum, minimum, number,
and sum of the values in a column. The GROUP BY clause of a select statement is used to partition rows
into groups.

Desired Information Expected Output Query

all names of people who
have at least 4 friends

Carolyn
Kelly
Mike
Tyler
Will

the states that Will's
friends live in, and how
many friends in each
state

Arizona|1
California|2
Massachusetts|1
Texas|1

Text from every post that
was liked within 2
minutes of post time

Scorpions
Winner winner chicken dinner
Snickers
Sandwiches

Every pair of people that
share the same hobby,
as well as that shared
hobby.
Make sure your output
doesn’t have duplicate
pairs

Carolyn|Will|karaoke
Dan|Mike|disc golf
Hali|Jenn|surfing
Joaquin|Shirin|traveling
Joaquin|So|traveling
Kelly|Tyler|football
Shirin|So|traveling

The counts of the
number of people that
live in each state, with
each state listed in
descending order of
count

California|9
Florida|2
New York|2
Arizona|1
Maine|1
Massachusetts|1
Texas|1
Utah|1

Question 4: Mutation! Insert stuff! Update stuff! Delete stuff!

Directions Query

Send a friend request by
inserting a new friend
request from Denero to
Hilfy

Help fakebook user
Denero send a friend
request to every person
who liked post 349 by
inserting into ​requests

Change the hobby of
every person whose
name is Joe to CS

Create a table
num_likes​ with the
columns ​name,
post_id, number​. Each
row should contain a
poster’s ​name​, a
post_id​, and number of
likes the post received

Carolyn is a bit shy.
Delete all of her posts in
the ​num_likes​ table with
fewer than 4 likes

Create an empty table
called ​privacy​ with
columns ​name ​and
visibility​ which
should hold the

default to everyone​.

Add​ Hermish ​to the
privacy​ table using the
default value.

STOP!
Don’t proceed until everyone in your group has finished and understands all exercises in this

section, and you have gotten checked off for ​Check-in #2

Macros

Question 0

What will Scheme output? If you think it errors, write Error.

scm> (define-macro (doierror) (/ 1 0))

scm>(doierror)

scm> (define x 5)

scm> (define-macro (evaller y) (list (list 'lambda '(x) x)) y)

scm> (evaller 2)

Question 1
Implement stream-cons and stream-cdr based on the doctests below. You do not need to worry
about multiple evaluations; in other words, stream-cdr may cause the value to be recomputed (unlike
actual streams which the cdr can only be forced / evaluated once). In your implementation, you may
not use cons-stream or cdr-stream. ​Hint​: In most cases, e.g. with expressions like (define x (/ 1 0)),
we evaluate an entire expression immediately, violating the properties of lazy evaluation that a
stream uses. But in certain cases, we can prevent the evaluation of an expression until later. What’s
an example of that, and how can we use that here?

scm> (define (naturals-from n) (stream-cons n (naturals-from (+ n 1))))
naturals-from
scm> (define naturals (naturals-from 0))
naturals
scm> (car (stream-cdr (stream-cdr (stream-cdr (stream-cdr naturals)))))
4

(define-macro (stream-cons x xs)

 __)

(define (stream-cdr xs)

 __)

Question 2
The goal of this question is to define a macro that represents a while loop. Since this is a difficult
task we will break it into parts.

2a
Write tail-recursive factorial:
(define (fact n)

)

2b
Using the above problem to assist implementation, create the while macro. This macro will accept 4
arguments:

- initial-bindings: this will represent initialization values for variables in the loop
- condition: this will represent the condition which the while loop should continue to check to

see if the loop should continue
- return: after the loop has ended this represents the value that should be returned

You may find the built-in map function useful for this problem:
scm > (map (lambda (x) (* 2 x)) ‘(1 2 3))

(2 4 6)

And here’s an example of the while macro being used to calculate the factorial:
scm > (define (fact n)

(while

((acc 1) (n n))

(> n 0)

((* acc n) (- n 1))

acc))

fact

scm> (fact 4)

24

Fill in the following macro definition:

(define-macro (while initial-bindings condition updates return)

 (define helper-vars ___)

 (define initial-vals __)

 (list 'begin

 (list 'define (cons 'helper _________________________________)

 `(if __

 ​__

 __)

 __))

CONGRATULATIONS!
You made it to the end of the worksheet! Great work.

