HIGHER-ORDER FUNCTIONS AND SEQUENCES

CS 61 A GROUP MENTORING

June 27, 2018

Higher-Order Functions

1. Why and where do we use lambda and higher-order functions?

2. Draw the environment diagram that results from running the code.

x = 20
def foo(y):
x =5
def bar():

return lambda y: x - y
return bar

y = foo(7)
z =vy()
print (z (2))
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3. Draw the environment diagram that results from running the code.
apple = 4
def orange (apple):
apple = 5
def plum(x) :
return lambda plum: plum * 2
return plum

orange (apple) ("hiii") (4)
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4. Write a higher-order function that passes the following doctests.

Challenge: Write the function body in one line.
def mystery(f, x):

>>> from operator import add, mul

>>> a = mystery (add, 3)

>>> a(4) # add(3, 4)

.

>>> a(l2)

15

>>> b = mystery(mul, 5)

>>> b (7) # mul (5, 7)

35

>>> b (1)

5

>>> ¢ = mystery(lambda x, y: x * x + vy, 4)

>>> ¢ (5)

21

>>> ¢ (7)

23

nmnmon

5. What would Python display?
>>> foo = mystery(lambda a, b: a(b), lambda c: 5 + square(c))
>>> foo(-2)
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Sequences

6. Draw box-and-pointer diagrams for the following:
>>> a = [1, 2, 3]
>>> a

>>> a[2]

>>> b = a
>>> a = a + [4, 5]
>>> a

>>> b

>>> ¢ = a
>>> a = [4, 5]
>>> a

>>> C

>>> d = c[0:2]
>>> c[0] = 9
>>> d

7. Write a function duplicate_1list, which takes in a list of positive integers and returns a new list with
each element x in the original list duplicated = times.
def duplicate_list (lst):
>>> duplicate_list ([1, 2, 3])
(1, 2, 2, 3, 3, 3]
>>> duplicate_list ([5])
[5, 5, 5, 5, 5]

nmn
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