HIGHER-ORDER FUNCTIONS AND SEQUENCES

CS 61 A GROUP MENTORING

June 27, 2018

Higher-Order Functions

1. Why and where do we use lambda and higher-order functions?

2. Draw the environment diagram that results from running the code.

x = 20
def foo(y):
x =5
def bar():

return lambda y: x - y
return bar

y = foo(7)
z =vy()
print (z (2))



GROUP TUTORING HANDOUT 2: HIGHER-ORDER FUNCTIONS AND SEQUENCES Page 2

3. Draw the environment diagram that results from running the code.
apple = 4
def orange (apple):
apple = 5
def plum(x) :
return lambda plum: plum * 2
return plum

orange (apple) ("hiii") (4)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and

Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 2: HIGHER-ORDER FUNCTIONS AND SEQUENCES Page 3

4. Write a higher-order function that passes the following doctests.

Challenge: Write the function body in one line.
def mystery(f, x):

>>> from operator import add, mul

>>> a = mystery (add, 3)

>>> a(4) # add(3, 4)

.

>>> a(l2)

15

>>> b = mystery(mul, 5)

>>> b (7) # mul (5, 7)

35

>>> b (1)

5

>>> ¢ = mystery(lambda x, y: x * x + vy, 4)

>>> ¢ (5)

21

>>> ¢ (7)

23

nmnmon

5. What would Python display?
>>> foo = mystery(lambda a, b: a(b), lambda c: 5 + square(c))
>>> foo(-2)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and

Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 2: HIGHER-ORDER FUNCTIONS AND SEQUENCES Page 4

Sequences

6. Draw box-and-pointer diagrams for the following:
>>> a = [1, 2, 3]
>>> a

>>> a[2]

>>> b = a
>>> a = a + [4, 5]
>>> a

>>> b

>>> ¢ = a
>>> a = [4, 5]
>>> a

>>> C

>>> d = c[0:2]
>>> c[0] = 9
>>> d

7. Write a function duplicate_1list, which takes in a list of positive integers and returns a new list with
each element x in the original list duplicated = times.
def duplicate_list (lst):
>>> duplicate_list ([1, 2, 3])
(1, 2, 2, 3, 3, 3]
>>> duplicate_list ([5])
[5, 5, 5, 5, 5]

nmn

for

for

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and

Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



