RECURSION AND TREE RECURSION

CS 61 A GROUP MENTORING

July 2,2018

Recursion

Every Recursive function has three things.
1. One or more base cases
2. One or more ways to break the problem down into a smaller problem
* E.g. Given a number as input, we need to break it down into a smaller number

3. Solve the smaller problem recursively; from that, form a solution to the original problem

1. What is wrong with the following function? How can we fix it?
def factorial (n):
return n x* factorial (n)

2. Complete the definition for al1_true, which takes in a list 1 st and returns True if there are no False-y
values in the list and False otherwise. Make sure that your implementation is recursive.
def all_true(lst):
>>> all_true([True, 1, "True"])
True
>>> all_true([1l, 0, 17)
False
>>> all_true([])

True
mmwn
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3. Write a function is_sorted that takes in an integer n and returns true if the digits of that number are
nondecreasing from right to left.
def is_sorted(n):
nmnwn
>>> is_sorted(2)
True
>>> 1s_sorted(22222)
True
>>> is_sorted(9876543210)
True
>>> 1s_sorted(9087654321)
False

nmn
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4. Draw the environment diagram that results from running the code.
def bar(f, x):
if x ==
return f (x)
else:
return f(x) + bar(f, x - 1)

f =14
bar (lambda x: x + f, 2)
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5. Write a function that takes as input a number, n, and a list of numbers, 1st, and returns true if we can

find a subset of 1st that sums up to n.

def add_up(n, 1lst):
nmnmon
>>> add_up (10, [1, 2, 3, 4, 51)
True
>>> add_up(8, [2, 1, 5, 4, 31)
True
>>> add_up (-1, [1, 2, 3, 4, 51)
False
>>> add_up (100, [1, 2, 3, 4, 5])
False

nmn

if

return True

if 1st == []:

else:

first, rest = ’

return
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