RECURSION AND TREE RECURSION

CS 61 A GROUP MENTORING

July 2,2018

Recursion

Every Recursive function has three things.
1. One or more base cases
2. One or more ways to break the problem down into a smaller problem
* E.g. Given a number as input, we need to break it down into a smaller number

3. Solve the smaller problem recursively; from that, form a solution to the original problem

1. What is wrong with the following function? How can we fix it?
def factorial (n):
return n x* factorial (n)

2. Complete the definition for al1_true, which takes in a list 1 st and returns True if there are no False-y
values in the list and False otherwise. Make sure that your implementation is recursive.
def all_true(lst):
>>> all_true([True, 1, "True"])
True
>>> all_true([1l, 0, 17)
False
>>> all_true([])

True
mmwn



GROUP TUTORING HANDOUT 3: RECURSION AND TREE RECURSION Page 2

3. Write a function is_sorted that takes in an integer n and returns true if the digits of that number are
nondecreasing from right to left.
def is_sorted(n):
nmnwn
>>> is_sorted(2)
True
>>> 1s_sorted(22222)
True
>>> is_sorted(9876543210)
True
>>> 1s_sorted(9087654321)
False

nmn

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and

Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 3: RECURSION AND TREE RECURSION Page 3

4. Draw the environment diagram that results from running the code.
def bar(f, x):
if x ==
return f (x)
else:
return f(x) + bar(f, x - 1)

f =14
bar (lambda x: x + f, 2)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and

Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 3: RECURSION AND TREE RECURSION Page 4

5. Write a function that takes as input a number, n, and a list of numbers, 1st, and returns true if we can

find a subset of 1st that sums up to n.

def add_up(n, 1lst):
nmnmon
>>> add_up (10, [1, 2, 3, 4, 51)
True
>>> add_up(8, [2, 1, 5, 4, 31)
True
>>> add_up (-1, [1, 2, 3, 4, 51)
False
>>> add_up (100, [1, 2, 3, 4, 5])
False

nmn

if

return True

if 1st == []:

else:

first, rest = ’

return

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and

Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



