
DATA ABSTRACTION AND TREES

CS 61A GROUP MENTORING

July 5, 2018

1 Data Abstraction

1. The following is an Abstract Data Type (ADT) for elephants. Each elephant keeps
track of its name, age, and whether or not it can fly. Given our provided constructor,
fill out the selectors:
def elephant(name, age, can_fly):

"""
Takes in a string name, an int age, and a boolean can_fly.
Constructs an elephant with these attributes.
>>> dumbo = elephant("Dumbo", 10, True)
>>> elephant_name(dumbo)
"Dumbo"
>>> elephant_age(dumbo)
10
>>> elephant_can_fly(dumbo)
True
"""
return [name, age, can_fly]

def elephant_name(e):

1



GROUP TUTORING HANDOUT 4: DATA ABSTRACTION AND TREES Page 2
def elephant_age(e):

def elephant_can_fly(e):

2. This function returns the correct result, but there’s something wrong about its imple-
mentation. How do we fix it?
def elephant_roster(elephants):

"""
Takes in a list of elephants and returns a list of their

names.
"""
return [elephant[0] for elephant in elephants]

3. Fill out the following constructor for the given selectors.
def elephant(name, age, can_fly):

def elephant_name(e):
return e[0][0]

def elephant_age(e):
return e[0][1]

def elephant_can_fly(e):
return e[1]

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 4: DATA ABSTRACTION AND TREES Page 3

4. How can we write the fixed elephant_roster function for the constructors and
selectors in the previous question?

5. (Optional) Fill out the following constructor for the given selectors.
def elephant(name, age, can_fly):

"""
>>> chris = elephant("Chris Martin", 38, False)
>>> elephant_name(chris)

"Chris Martin"
>>> elephant_age(chris)

38
>>> elephant_can_fly(chris)

False
"""
def select(command)

return select
def elephant_name(e):

return e("name")
def elephant_age(e):

return e("age")
def elephant_can_fly(e):

return e("can_fly")

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 4: DATA ABSTRACTION AND TREES Page 4

2 Trees

Things to remember:
def tree(label, branches=[]):

return [label] + list(branches)

def label(tree):
return tree[0]

def branches(tree):
return tree[1:] #returns a list of branches

As shown above, the tree constructor takes in a label and a list of branches (which are
themselves trees).

tree(4,
[tree(5),
tree(2,

[tree(2),
tree(1)]),

tree(1),
tree(8,

[tree(4)])])

This creates a tree that looks like this:

4

5 2

2 1

1 8

4

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 4: DATA ABSTRACTION AND TREES Page 5

1. Construct the following tree and save it to the variable t.

9

2 4

1

4

7 3

2. What do the following expressions evaluate to? If the expressions evaluates to a
tree, format your answer as tree(... , ...). (Note that the python interpreter
wouldn’t display trees like this. We ask you to do this in order to think about trees as
an ADT instead of worrying about their implementation.)
>>> label(t)

>>> branches(t)[2]

>>> branches(branches(t)[2])[0]

3. Write the Python expression to return the integer 2 from t.

4. Write the function sum_of_nodes which takes in a tree and outputs the sum of all
the elements in the tree.
def sum_of_nodes(t):

"""
>>> t = tree(...) # Tree from question 2.
>>> sum_of_nodes(t) # 9 + 2 + 4 + 4 + 1 + 7 + 3 = 30
30
"""

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 4: DATA ABSTRACTION AND TREES Page 6

5. Write a function, replace_x that takes in a tree, t, and returns a new tree with all
labels x replaced with 0.

For example, if we called replace_x(t, 2) on the following tree:

2

2 4

2

4

2 3

We would expect it to return

0

0 4

0

4

0 3

def replace_x(t, x):

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 4: DATA ABSTRACTION AND TREES Page 7

6. Challenge: Write a function that returns true only if there exists a path from root to
leaf that contains at least n instances of elem in a tree t.
def contains_n(elem, n, t):

"""
>>> t1 = tree(1, [tree(1, [tree(2)])])
>>> contains(1, 2, t1)
True
>>> contains(2, 2, t1)
False
>>> contains(2, 1, t1)
True
>>> t2 = tree(1, [tree(2), tree(1, [tree(1), tree(2)])])
>>> contains(1, 3, t2)
True
>>> contains(2, 2, t2) # Not on a path
False
"""
if n == 0:

return True

elif ___________________________________________:

return _____________________________________

elif label(t) == elem:

return _____________________________________

else:

return _____________________________________

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang


