
INTRODUCTION TO SCHEME

CS 61A GROUP MENTORING

July 11, 2018

1 What Would Scheme Print?

1. What will Scheme output?
scm> 3.14

scm> pi

scm> (define pi 3.14)

scm> pi

scm> 'pi

scm> (+ 1 2)

scm> (+ 1 (* 3 4))

scm> (if 2 3 4)

scm> (if 0 3 4)

scm> (- 5 (if #f 3 4))

scm> (if (= 1 1) 'hello 'goodbye)

1



GROUP TUTORING HANDOUT 5: INTRODUCTION TO SCHEME Page 2

scm> (define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

scm> (factorial 5)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 5: INTRODUCTION TO SCHEME Page 3

2 Code Writing in Scheme

2. Hailstone yet again Define a program called hailstone, which takes in two num-
bers seed and n, and returns the nth hailstone number in the sequence starting at
seed. Assume the hailstone sequence starting at seed is longer or equal to n. As a
reminder, to get the next number in the sequence, if the number is even, divide by
two. Else, multiply by 3 and add 1.

Useful procedures

• quotient: floor divides, much like // in python

(quotient 103 10) outputs 10

• remainder: takes two numbers and computes the remainder of dividing the
first number by the second

(remainder 103 10) outputs 3

; The hailstone sequence starting at seed = 10 would be
; 10 => 5 => 16 => 8 => 4 => 2 => 1

; Doctests
> (hailstone 10 0)
10
> (hailstone 10 1)
5
> (hailstone 10 2)
16
> (hailstone 5 1)
16

(define (hailstone seed n)

)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 5: INTRODUCTION TO SCHEME Page 4

3 Special Forms

3. What will Scheme output?
scm> (if 1 1 (/ 1 0))

scm> (and 1 #f (/ 1 0))

scm> (or #f #f 0 #f (/ 1 0))

scm> (define a 4)

scm> ((lambda (x y) (+ a x y)) 1 2)

scm> ((lambda (x y z) (y x z)) 2 / 2)

scm> ((lambda (x) (x x)) (lambda (y) 4))

scm> (define boom1 (/ 1 0))

scm> (define boom2 (lambda () (/ 1 0)))

scm> (boom2)

Why/How are the two “boom” definitions above different?

How can we rewrite boom2 without using the lambda operator?

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 5: INTRODUCTION TO SCHEME Page 5

4 More Code Writing

4. Define apply-multiplewhich takes in a single argument function f, a nonnegative
integer n, and a value x and returns the result of applying f to x a total of n times.
;doctests
scm> (apply-multiple (lambda (x) (* x x)) 3 2)
256
scm> (apply-multiple (lambda (x) (+ x 1)) 10 1)
11
scm> (apply-multiple (lambda (x) (* 1000 x)) 0 5)
5

(define apply-multiple (f n x)

)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang


