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1 What Would Scheme Print?

1. What will Scheme output?
scm> 3.14

scm> pi

scm> (define pi 3.14)

scm> pi

scm> 'pi

scm> (+ 1 2)

scm> (+ 1 (* 3 4))

scm> (if 2 3 4)

scm> (if 0 3 4)

scm> (- 5 (if #f 3 4))

scm> (if (= 1 1) 'hello 'goodbye)

1
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scm> (define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

scm> (factorial 5)
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2 Code Writing in Scheme

2. Hailstone yet again Define a program called hailstone, which takes in two num-
bers seed and n, and returns the nth hailstone number in the sequence starting at
seed. Assume the hailstone sequence starting at seed is longer or equal to n. As a
reminder, to get the next number in the sequence, if the number is even, divide by
two. Else, multiply by 3 and add 1.

Useful procedures

• quotient: floor divides, much like // in python

(quotient 103 10) outputs 10

• remainder: takes two numbers and computes the remainder of dividing the
first number by the second

(remainder 103 10) outputs 3

; The hailstone sequence starting at seed = 10 would be
; 10 => 5 => 16 => 8 => 4 => 2 => 1

; Doctests
> (hailstone 10 0)
10
> (hailstone 10 1)
5
> (hailstone 10 2)
16
> (hailstone 5 1)
16

(define (hailstone seed n)

)
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3 Special Forms

3. What will Scheme output?
scm> (if 1 1 (/ 1 0))

scm> (and 1 #f (/ 1 0))

scm> (or #f #f 0 #f (/ 1 0))

scm> (define a 4)

scm> ((lambda (x y) (+ a x y)) 1 2)

scm> ((lambda (x y z) (y x z)) 2 / 2)

scm> ((lambda (x) (x x)) (lambda (y) 4))

scm> (define boom1 (/ 1 0))

scm> (define boom2 (lambda () (/ 1 0)))

scm> (boom2)

Why/How are the two “boom” definitions above different?

How can we rewrite boom2 without using the lambda operator?
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4 More Code Writing

4. Define apply-multiplewhich takes in a single argument function f, a nonnegative
integer n, and a value x and returns the result of applying f to x a total of n times.
;doctests
scm> (apply-multiple (lambda (x) (* x x)) 3 2)
256
scm> (apply-multiple (lambda (x) (+ x 1)) 10 1)
11
scm> (apply-multiple (lambda (x) (* 1000 x)) 0 5)
5

(define apply-multiple (f n x)

)
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