
OOP

CS 61A GROUP MENTORING

July 19, 2017

1 OOP

1. (H)OOP
Given the following code, what will Python output for the following prompts?
class Baller:

all_players = []
def __init__(self, name, has_ball = False):

self.name = name
self.has_ball = has_ball
Baller.all_players.append(self)

def pass_ball(self, other_player):
if self.has_ball:

self.has_ball = False
other_player.has_ball = True
return True

else:
return False

class BallHog(Baller):
def pass_ball(self, other_player):

return False

>>> alex = Baller('Alex', True)
>>> mitas = BallHog('Mitas')
>>> len(Baller.all_players)

>>> Baller.name

>>> len(mitas.all_players)

1



GROUP TUTORING HANDOUT 7: OOP Page 2
>>> alex.pass_ball()

>>> alex.pass_ball(mitas)

>>> alex.pass_ball(mitas)

>>> BallHog.pass_ball(mitas, alex)

>>> mitas.pass_ball(alex)

>>> mitas.pass_ball(mitas, alex)

2. Write TeamBaller, a subclass of Baller. An instance of TeamBaller cheers on the team every time
it passes a ball.
class TeamBaller(_______________):

"""
>>> mitas = BallHog('Mitas')
>>> cheerballer = TeamBaller('Chris', has_ball=True)
>>> cheerballer.pass_ball(mitas)
Yay!
True
>>> cheerballer.pass_ball(mitas)
I don't have the ball
False
"""
def pass_ball(_______________, ________________):

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 7: OOP Page 3

3. Lets use OOP to help us implement our good friend, the ping-pong sequence!

As a reminder, the ping-pong sequence counts up starting from 1 and is always either counting up or
counting down.

At element k, the direction switches if k is a multiple of 7 or contains the digit 7.

The first 30 elements of the ping-pong sequence are listed below, with direction swaps marked using
brackets at the 7th, 14th, 17th, 21st, 27th, and 28th elements:
1 2 3 4 5 6 [7] 6 5 4 3 2 1 [0] 1 2 [3] 2 1 0 [-1] 0 1 2 3 4
[5] [4] 5 6

Assume you have a function has seven(k) that returns True if k contains the digit 7.

>>> tracker1 = PingPongTracker()
>>> tracker2 = PingPongTracker()
>>> tracker1.next()
1
>>> tracker1.next()
2
>>> tracker2.next()
1

class PingPongTracker:
def __init__(self):

self.current = 0
self.index = 1
self.add = True

def next(self):

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 7: OOP Page 4

4. Flying the cOOP What would Python display? Write the result of executing the code and the prompts
below. If a function is returned, write ”Function”. If nothing is returned, write ”Nothing”. If an error
occurs, write ”Error”.

class Bird:
def __init__(self, call):

self.call = call
self.can_fly = True

def fly(self):
if self.can_fly:

return "Don't stop me now!"
else:

return "Ground control to Major Tom..."
def speak(self):

print(self.call)

class Chicken(Bird):
def speak(self, other):

Bird.speak(self)
other.speak()

class Penguin(Bird):
can_fly = False
def speak(self):

call = "Ice to meet you"
print(call)

andre = Chicken("cluck")
gunter = Penguin("noot")

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 7: OOP Page 5
>>> andre.speak(Bird("coo"))

>>> andre.speak()

>>> gunter.fly()

>>> andre.speak(gunter)

>>> Bird.speak(gunter)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 7: OOP Page 6

2 Mutable Trees

Now that we know how to create objects using Python’s class system, we have a new way of imple-
menting some of the ADTs we saw earlier in the course. This allows us to reassign attributes of that
object any time we want!

Here’s an example of implementing trees using a class.
class Tree:

def __init__(self, label, branches=[]):
self.label = label
self.branches = branches

def is_leaf(self):
return not self.branches

Here’s how we might use this class:
>>> t = Tree(1, [Tree(2)])
>>> t.label
1
>>> t.label = 2
>>> t.label
2
>>> t.branches = t.branches + [Tree(3)]
>>> [b.label for b in t.branches]
[2, 3]
>>> t.branches[1].is_leaf()
True

5. Implement tree_sum which takes in a Tree object and replaces the root value with the sum of all the
values in the tree. tree_sum should also return the new root value.
def tree_sum(t):

"""
>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4)])
>>> tree_sum(t)
10
>>> t.label
10
>>> t.branches[0].label
5
>>> t.branches[1].label
4
"""

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 7: OOP Page 7

6. DoubleTree hired you to architect one of their hotel expansions! As you might expect, their floor plan
can be modeled as a tree and the expansion plan requires doubling each node (the patented double
tree floor plan). Here’s what some sample expansions look like:

Before After

1

2 3

1

1

2

2

3

3

Fill in the implementation for double_tree.
def double_tree(t):

"""
Given a tree, mutate it such that each entry appears
twice.
>>> t = Tree(1)
>>> double_tree(t)
>>> t.label
1
>>> t.branches[0].label
1
"""

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang


