
GENERATORS AND STREAMS

CS 61A GROUP MENTORING

July 25, 2018

1 Iterators and Generators

1. What does the following code block output?
def foo():

a = 0
if a < 10:

print("Hello")
yield a
print("World")

for i in foo():
print(i)

2. How can we modify foo so that it satisfies the following doctests?
>>> a = list(foo())
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

1



GROUP TUTORING HANDOUT 9: GENERATORS AND STREAMS Page 2

3. Define filter_gen, a generator that takes in iterable s and one-argument function
f and yields every value from s for which f returns True
def filter_gen(s, f):

"""
>>> list(filter_gen([1, 2, 3, 4, 5],

lambda x: x % 2 == 0))
[2, 4]
>>> list(filter_gen((1, 2, 3, 4, 5), lambda x: x < 3))
[1, 2]
"""

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 9: GENERATORS AND STREAMS Page 3

4. Define tree_sequence, a generator that iterates through a tree by first yielding the
root value and then yielding the values from each branch. Use the object-oriented
representation of trees in your solution.
def tree_sequence(t):

"""
>>> t = Tree(1, [Tree(2, [Tree(5)]), Tree(3, [Tree(4)])])
>>> print(list(tree_sequence(t)))
[1, 2, 5, 3, 4]
"""

5. (Optional) Write a generator that takes in a tree and yields each possible path from
root to leaf, represented as a list of the values in that path. Use the object-oriented
representation of trees in your solution.

def all_paths(t):
"""
>>> t = Tree(1, [Tree(2, [Tree(5)]), Tree(3, [Tree(4)])])
>>> print(list(all_paths(t)))

[[1, 2, 5], [1, 3, 4]]
"""

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 9: GENERATORS AND STREAMS Page 4

2 Streams

1. What’s the advantage of using a stream over a scheme list?

2. What’s the maximum size of a stream?

3. What’s stored in the car and cdr of a stream? What are their types?

4. When is the next element actually calculated?

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 9: GENERATORS AND STREAMS Page 5
5. What Would Scheme Display?

(a) scm> (define (foo x)(+ x 10))

(b) scm> (define bar (cons-stream (foo 1)(cons-stream (foo 2)bar)))

(c) scm> (car bar)

(d) scm> (cdr bar)

(e) scm> (define (foo x)(+ x 1))

(f) scm> (cdr-stream bar)

(g) scm> (define (foo x)(+ x 5))

(h) scm> (car bar)

(i) scm> (cdr-stream bar)

(j) scm> (cdr bar)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 9: GENERATORS AND STREAMS Page 6

3 Code Writing for Streams

1. Implement double-naturals, which is a returns a stream that evaluates to the se-
quence 1, 1, 2, 2, 3, 3, etc.
(define (double-naturals)

(double-naturals-helper 1 #f)
)
(define (double-naturals-helper first go-next)

2. Implement interleave, which returns a stream that alternates between the values
in stream1 and stream2. Assume that the streams are infinitely long.

(define (interleave stream1 stream2)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 9: GENERATORS AND STREAMS Page 7

4 Tail Recursion

1. Consider the following function:
(define (count-instance lst x)

(cond ((null? lst) 0)
((equal? (car lst) x) (+ 1 (count-instance

(cdr lst) x)))
(else (count-instance (cdr lst) x))))

What is the purpose of count-instance? Is it tail recursive? Why or why not?
Optional: draw out the environment diagram of this sum-list with lst = (1 2 1)
and x = 1.

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 9: GENERATORS AND STREAMS Page 8

2. Rewrite count-instance to be tail recursive.
(define (count-tail lst x)

)

3. Implement filter, which takes in a one-argument function f and a list lst, and
returns a new list containing only the elements in lst for which f returns true. Your
function must be tail recursive.
You may wish to use the built-in append function, which takes in two lists and returns
a new list containing the elements of the first list followed by the elements of the
second.
;Doctests
scm> (filter (lambda (x) (> x 2)) '(1 2 3 4 5))
(3 4 5)

(define (filter f lst)

)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang


