
INTERPRETERS AND MACROS

CS 61A GROUP MENTORING

July 30, 2018

1 Let in Scheme

1. let is a special form in Scheme which allows you to create local bindings. Consider
the example

(let ((x 1)) (+ x 1))

Here, we assign x to 1, and then evaluate the expression (+ x 1) using that
binding, returning 2. However, outside of this expression, x would not be bound to
anything.
Each let special form has a corresponding lambda equivalent. The equivalent
lambda expression for the above example is

((lambda (x) (+ x 1)) 1)

The following line of code does not work. Why? Write the lambda equivalent
of the let expressions.
(let ((foo 3)

(bar (+ foo 2)))
(+ foo bar))

1



GROUP TUTORING HANDOUT 10: INTERPRETERS AND MACROS Page 2

2 Interpreters

The following questions refer to the Scheme interpreter. Assume we’re using the im-
plementation seen in lecture and in the Scheme project, as well as the Calculator sub-
set seen in discussion.

2. What’s the purpose of the read stage in a Read-Eval-Print Loop? For our Scheme
interpreter, what does it take in, and what does it return?

3. What are the two components of the read stage? What do they do?

4. Write out the constructor for the Pair object the read stage creates with the input string
(define (foo x) (+ x 1))

5. For the previous example, imagine we saved that Pair object to the variable p. How
could we check that the expression is a define special form? How would we access
the name of the function and the body of the function?

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 10: INTERPRETERS AND MACROS Page 3

6. Write the number of calls to scheme_eval and scheme_apply for the code below.
scm> (+ 1 2)
3

scm> (if 1 (+ 2 3) (/ 1 0))
5

scm> (or #f (and (+ 1 2) 'apple) (- 5 2))
apple

scm> (define (square x) (* x x))
square
scm> (+ (square 3) (- 3 2))
10

scm> (define (add x y) (+ x y))
add
scm> (add (- 5 3) (or 0 2))
2

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 10: INTERPRETERS AND MACROS Page 4

3 Macros

1. What will Scheme output?
scm> (define x 6)

scm> (define y 1)

scm> '(x y a)

scm> ‘(,x ,y a)

scm> ‘(,x y a)

scm> ‘(,(if (- 1 2) '+ '-) 1 2)

scm> (eval ‘(,(if (- 1 2) '+ '-) 1 2))

scm> (define (add-expr a1 a2)
(list '+ a1 a2))

scm> (add-expr 3 4)

scm> (eval (add-expr 3 4))

scm> (define-macro (add-macro a1 a2)
(list '+ a1 a2))

scm> (add-macro 3 4)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 10: INTERPRETERS AND MACROS Page 5

2. Implement if-macro, which behaves similarly to the if special form in Scheme but
has some additional properties. Here’s how the if-macro is called:
if <cond1> <expr1> elif <cond2> <expr2> else <expr3>
If cond1 evaluates to a truth-y value, expr1 is evaluated and returned. Otherwise, if
cond2 evaluates to a truth-y value, expr2 is evaluated and returned. If neither condi-
tion is true, expr3 is evaluted and returned.
;Doctests
scm> (if-macro (= 1 0) 1 elif (= 1 1) 2 else 3)
2
scm> (if-macro (= 1 1) 1 elif (= 2 2) 2 else 3)
1
scm> (if-macro (= 1 0) (/ 1 0) elif (= 2 0) (/ 1 0) else 3)
3

(define-macro (if-macro cond1 expr1 elif cond2 expr2 else
expr3)

)

3. Could we have implemented if-macro using a function instead of a macro? Why or
why not?

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang



GROUP TUTORING HANDOUT 10: INTERPRETERS AND MACROS Page 6

4. Implement apply-twice, which is a macro that takes in a call expression with a
single argument. It should return the result of applying the operator to the operand
twice.
;Doctests
scm> (define add-one (lambda (x) (+ x 1)))
add-one
scm> (apply-twice (add-one 1))
3
scm> (apply-twice (print 'hi))
hi
undefined

(define-macro (apply-twice call-expr)

‘(let ((operator _______________________)

(operand _______________________))

(___________________________________________)))

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang


