
FINAL REVIEW

CS 61A GROUP MENTORING

April 23 to April 25, 2018

1 Environment Diagrams, Nonlocal, and Mutation

1. Draw the environment diagram that results from running the following code. If the
code errors, draw the environment diagram up to the point that the error occurs.
earth = [0]
earth.append([earth])

def wind(fire, groove):
fire[1][0][0] = groove
def fire():

nonlocal fire
fire = lambda fantasy: earth.pop(1).extend(fantasy)
return fire(groove)

return fire()

sep = earth[1]
wind(earth, [earth[0]] + [earth.append(0)])
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2 Trees

1. Define the function factor tree which takes in a positive integer n and returns a
factor tree for n. In a factor tree, multiplying the leaves together is the prime factor-
ization of the root, n. See below for an example of a factor tree for n = 20.

def factor_tree(n):
"""
>>> factor_tree(20)
Tree(20, [Tree(2), Tree(10, [Tree(2), Tree(5)])])
>>> factor_tree(1)
Tree(1)

for i in ______________________:

if ________________________:

return Tree(_____, _____________________________)

_______________________________
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2. Implement rotate, which takes in a tree and rotates the labels at each level of the
tree by one to the left destructively. This rotation should be modular (That is, the
leftmost label at a level will become the rightmost label after running rotate). You do
NOT need to rotate across different branches.

For example, given the following tree,t

1

2 3

4

5

calling rotate on t should mutate it to give us

1

3 5

4

2

Fill in your implementation on the next page.
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def rotate(t):

"""
>>> t1 = Tree(1, [Tree(2), Tree(3, [Tree(4)]), Tree(5)])
>>> rotate(t1)
>>> t1
Tree(1, [Tree(3), Tree(5, [Tree(4)]), Tree(2)])
>>> t2 = Tree(1, [Tree(2, [Tree(3), Tree(4)]),

Tree(5, [Tree(6)])])
>>> rotate(t2)
>>> t2
Tree(1, [Tree(5, [Tree(4), Tree(3)]),

Tree(2, [Tree(6)])])
"""

branch_labels = ___________________________________

n = len(t.branches)

for ______________________________________________:

branch = ______________________________________

______________________________________________

______________________________________________
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3 Scheme

1. Implement slice, which takes in a a list lst, a starting index i, and an ending index
j, and returns a new list containing the elements of lst from index i to j - 1.
;Doctests
scm> (slice '(0 1 2 3 4) 1 3)
(1 2)
scm> (slice '(0 1 2 3 4) 3 5)
(3 4)
scm> (slice '(0 1 2 3 4) 3 1)
()

(define (slice lst i j)

)

2. Now implement slice with the same specifications, but make you implementation tail
recurisve.
You may wish to use the built-in append function, which takes in two lists and returns
a new list containing the elements of the two lists concatenated together.
(define (slice lst i j)

)
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3. Fill in the implementation of shuffle, which takes in a Scheme list and modifies the
list such that each pair of elements in the list is swapped. It should additionally return
the new list.
;Doctests
scm> (shuffle '(1 2 3 4)
(2 1 4 3)
scm> shuffle('(s c 1 6 a))
(c s 6 1 a)

(define (shuffle lst)
(if ___________________________________________

___________________________________________

(begin

(define front _______________________________ )

(set-cdr! lst ________________________________ )

___________________________________________

front)))
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4 Iterators, Generators, and Streams

1. What Would Python Display?
class SkipMachine:

skip = 1
def __init__(self, n=2):

self.skip = n + SkipMachine.skip

def generate(self):
current = SkipMachine.skip
while True:

yield current
current += self.skip
SkipMachine.skip += 1

p = SkipMachine()
twos = p.generate()
SkipMachine.skip += 1
twos2 = p.generate()
threes = SkipMachine(3).generate()

(a) next(twos)

(b) next(threes)

(c) next(twos)

(d) next(twos)

(e) next(threes)

(f) next(twos2)
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2. (a) You and your CS 61A friends are cons. You cdr’d just studied for the final, but
instead you scheme to drive away across a stream in a car during dead week. Of
course, you would like a variety of food to eat on your road trip.

Write an infinite stream that takes in a list of foods and loops back to the first food
in the list when the list is exhausted.
;Doctests
scm> (define fruit (food-stream '(apple banana orange)))
fruit
scm> (car fruit)
apple
scm> (car (cdr-stream fruit))
banana
scm> (car (cdr-stream (cdr-stream (cdr-stream fruit))))
apple

(define (food-stream foods)

(b) We discover that some of our food is stale! Every other food that we go through
is stale, so put it into a new stale food stream. Assume is-stale starts off as #f.
;Doctests
scm> (define cookies (stale-stream '(oatmeal chocolate

sugar oreo)))
cookies
scm> (car cookies)
chocolate
scm> (car (cdr-stream cookies))
oreo

(define (stale-stream foods is-stale)

CS61A Summer 2018: Alex Stennet and Chris Allsman, with content by Jennie Chen and
Ajay Raj, Alex Yang, Annie Tang, Brandon Fong, Catherine Han, Danelle Nachum, Elaine Park, Hyun Jae Moon,
Kevin Tsang, Lindsay Yang, Michelle Cheung, Ryan Moughan, Ryan Roggenkemper, Shreya Sahoo, Surya Duggirala,
Thomas Zhang


