
CS 61A Introduction and Functions
Summer 2018 Discussion 0: June 19, 2018

1 Lost on the Moon
Your spaceship has just crashed on the moon. You were scheduled to rendezvous with a mother ship 200

miles away on the lighted surface of the moon, but the rough landing has ruined your ship and destroyed

all the equipment on board except for the 15 items listed below.

Your crew’s survival depends on reaching the mother ship, so you must choose the most critical items

available for the 200-mile trip. Your task is to rank the 15 items in terms of their importance for survival.

Place a number 1 by the most important item, number 2 by the second most important, and so on, through

number 15, the least important.

Item
Your

Rank (1)

Group’s

Rank (2)

NASA’s

Rank (3)
|(3)− (1)| |(3)− (2)|

Box of matches

Food concentrate

50 feet of nylon rope

Parachute silk

Solar-powered portable heating unit

Two .45 caliber pistols

One case of dehydrated milk

Two 100-pound tanks of oxygen

Stellar map (of the moon’s constellations)

Self-inflating life raft

Magnetic compass

5 gallons of water

Signal flares

First-aid kit containing injection needles

Solar-powered FM receiver-transmitter

Total

2 Introduction and Functions

2 Python basics
Primitive expressions
A primitive expression requires only a single evaluation step. Literals, such as numbers and strings,

evaluate to themselves. Names require a single lookup step (see the Assignment statements section below).

>>> 2

2

>>> 'Hello World!'

'Hello World!'

Arithmetic expressions
Arithmetic expressions in Python are very similar to ones we’ve seen in other math contexts. They

involve binary arithmetic operators (+, -, *, /, //, %, and **) and follow PEMDAS rules.

>>> 6 + 2 * 5

16

>>> 9 // 2 # Floor division (rounding down)

4

>>> 9 % 2 # Modulus (remainder of 9 // 2)

1

>>> (3 + 2) * 4 // 3

6

>>> 4 ** 3 # Exponent

64

Assignment statements
An assignment statement assigns a certain value to a variable name.

x︸︷︷︸
Name

= 2 + 3︸ ︷︷ ︸
Expression

To execute an assignment statement:

1. Evaluate the expression on the right-hand-side of the statement to obtain a value.

2. Bind the value to the name on the left-hand-side of the statement.

Let’s try to assign the primitive value 6 to the name a, and subsequently do a lookup on a.

>>> a = 6

>>> a

6

Introduction and Functions 3

Now, let’s reassign a to another value. This time, let’s use a more complex expression. Note that the name

is bound to the value, not the expression!

>>> a = (3 + 5) // 2

>>> a

4

Questions
2.1 What would Python display?

>>> 3 + 4 ** 2

>>> a = 6 + 2 * 4

>>> a

>>> b = (2 + 2) * 2 + 3 % 2

>>> b

>>> a + 2 * b

>>> b += a # Equivalent to b = b + a

>>> a

>>> b

4 Introduction and Functions

3 Functions
Writing and calling functions is a crucial part in manage complexity when programming.

Functions allow us to apply a series of statements to some arguments to produce a return value. For,

example, let’s take a look at the built-in abs function:

>>> abs(123)

123

>>> abs(-2000)

2000

This function takes in one argument, a number, and returns its absolute value. Since this is a built-in

function, we don’t know what statements were executed to obtain this output. The expressions above are

known as call expressions.

Calling functions
A call expression applies a function to 0 or more arguments and evaluates to the function’s return value.

add︸︷︷︸
Operator

(2︸︷︷︸
Operand 0

, 3︸︷︷︸
Operand 1

)

To evaluate a function call:

1. Evaluate the operator, which should evaluate to a function.

2. Evaluate the operands from left to right to get the values of the arguments.

3. Apply the function (the value of the operator) to the arguments (the values of the operands) to

obtain the return value.

If the operator or an operand is itself a call expression, then these steps are applied in order to evaluate

it.

Defining functions
The def statement defines functions.

def square(x):

return x * x

When a def statement is executed, Python creates a binding from the name (e.g. square) to a function.

The names in parentheses are the function’s parameters (in this case, x is the only parameter). When

the function is called, the body of the function is executed (in this case, return x * x).

Introduction and Functions 5

Questions
3.1 Consider the function below.

def foo(x, y):

y = y + 4

x = y / 2

return x * y

How many arguments does this function take in, and what type should they be?

Consider the call expression foo(5, 1 + 3). What are x and y bound to inside the body of the function

during this call?

What does the call expression foo(5, 4) return?

What about foo(10, 4)?

3.2 Now, let’s practice defining functions. In the space below, write a function called square diff that takes

in two integer arguments and returns the result of squaring the difference between the arguments. You

may name the parameters whatever you’d like. Be sure to use proper Python syntax!

>>> square_diff(4, 1)

9

>>> square_diff(2, 7)

25

