
CS 61A Control and Environments
Summer 2018 Discussion 1: June 21, 2018

1 Control
Control structures direct the flow of logic in a program. For example, conditionals

(if-elif-else) allow a program to skip sections of code, while iteration (while),

allows a program to repeat a section.

If statements
if <conditional expression>:

<suite of statements>

elif <conditional expression>:

<suite of statements>

else:

<suite of statements>

Conditional statements let programs execute different lines of code depending

on certain conditions. Let’s review the if- elif-else syntax.

Recall the following points:

• The else and elif clauses are optional, and you can have any number of elif

clauses.

• A conditional expression is a expression that evaluates to either a true

value (True, a non-zero integer, etc.) or a false value (False, 0, None, "", [],

etc.).

• Only the suite that is indented under the first if/elif with a conditional

expression evaluating to a true value will be executed.

• If none of the conditional expressions evaluate to a true value, then the

else suite is executed. There can only be one else clause in a conditional

statement!

Boolean Operators
>>> not None

True

>>> not True

False

>>> -1 and 0 and 1

0

>>> False or 9999 or 1/0

9999

Python also includes the boolean operators and, or, and not. These operators

are used to combine and manipulate boolean values.

• not returns the opposite truth value of the following expression.

• and stops evaluating any more expressions (short-circuits) once it reaches the

first false value and returns it. If all values evaluate to a true value, the last

value is returned.

• or short-circuits at the first true value and returns it. If all values evaluate to

a false value, the last value is returned.

2 Control and Environments

Questions
1.1 Alfonso will only wear a jacket outside if it is below 60 degrees or it is raining.

Write a function that takes in the current temperature and a boolean value telling

if it is raining and returns True if Alfonso will wear a jacket and False otherwise.

First, try solving this problem using an if statement.

def wears_jacket_with_if(temp, raining):

"""

>>> wears_jacket(90, False)

False

>>> wears_jacket(40, False)

True

>>> wears_jacket(100, True)

True

"""

Note that we’ll either return True or False based on a single condition, whose

truthiness value will also be either True or False. Knowing this, try to write this

function using a single line.

def wears_jacket(temp, raining):

Control and Environments 3

While loops
while <conditional clause>:

<body of statements>

To repeat the same statements multiple times in a program, we can use iteration.

In Python, one way we can do this is with a while loop.

As long as <conditional clause> evaluates to a true value, <body of statements>

will continue to be executed. The conditional clause gets evaluated each time the

body finishes executing.

Questions
1.2 Write a function that returns True if n is a prime number and False otherwise. After

you have a working solution, think about potential ways to make your solution more

efficient.

Hint: use the % operator: x % y returns the remainder of x when divided by y.

def is_prime(n):

"""

>>> is_prime(10)

False

>>> is_prime(7)

True

"""

4 Control and Environments

2 Environment Diagrams
An environment diagram keeps track of all the variables that have been defined

and the values they are bound to. We will be using this tool throughout the course

to understand complex programs involving several different objects and function

calls.

x = 3

def square(x):

return x ** 2

square(2)

Remember that programs are simply a set of statements, or instructions, so drawing

diagrams that represent these programs also involve following sets of instructions!

Let’s dive in.

Assignment Statements
Assignment statements, such as x = 3, define variables in programs. To execute

one in an environment diagram, record the variable name and the value:

1. Evaluate the expression on the right side of the = sign

2. Write the variable name and the expression’s value in the current frame.

2.1 Use these rules to draw a simple diagram for the assignment statements below.

x = 10 % 4

y = x

x **= 2

Control and Environments 5

def Statements
def statements create function objects and bind them to a name. To diagram def

statements, record the function name and bind the function object to the name.

It’s also important to write the parent frame of the function, which is where the

function is defined.

1. Draw the function object to the right-hand-side of the frames, denoting the

intrinsic name of the function, its parameters, and the parent frame (e.g. func

square(x) [parent = Global].

2. Write the function name in the current frame and draw an arrow from the

name to the function object.

2.2 Use these rules and the rules for assignment statements to draw a diagram for the

code below.

def double(x):

return x * 2

def triple(x):

return x * 3

hmmm = double

double = triple

6 Control and Environments

Call Expressions
Call expressions, such as square(2), apply functions to arguments. When execut-

ing call expressions, we create a new frame in our diagram to keep track of local

variables:

1. Evaluate the operator, which should evaluate to a function.

2. Evaluate the operands from left to right.

3. Draw a new frame, labelling it with the following: 1

• A unique index (f1, f2, f3, ...)

• The intrinsic name of the function, which is the name of the func-

tion object itself. For example, if the function object is func square(x)

[parent=Global], the intrinsic name is square.

• The parent frame ([parent=Global])

4. Bind the formal parameters to the argument values obtained in step 2 (e.g.

bind x to 3).

5. Evaluate the body of the function in this new frame until a return value is

obtained. Write down the return value in the frame.

If a function does not have a return value, it implicitly returns None. In that case,

the “Return value” box should contain None.

2.3 Let’s put it all together! Draw an environment diagram for the following code.

def double(x):

return x * 2

hmmm = double

wow = double(3)

hmmm(wow)

1Since we do not know how built-in functions like add(...) or min(...) are implemented, we

do not draw a new frame when we call built-in functions.

Control and Environments 7

3 Higher Order Functions
A higher order function (HOF) is a function that manipulates other functions

by taking in functions as arguments, returning a function, or both.

Functions as Arguments
def negate(f, x):

return -f(x)

One way a higher order function can manipulate other functions is by taking func-

tions as input (an argument). Consider this higher order function called negate.

negate takes in a function f and a number x. It doesn’t care what exactly f does,

as long as f is a function, takes in a number and returns a number. Its job is simple:

call f on x and return the negation of that value.

Questions
3.1 Here are some possible functions that can be passed through as f.

def square(n):

return n * n

def double(n):

return 2 * n

What will the following Python statements display?

>>> negate(square, 5)

>>> negate(double, -19)

>>> negate(double, negate(square, -4))

8 Control and Environments

Functions as Return Values
def outer(x):

def inner(y):

...

return inner

def inner(y):

...

def outer(x):

return inner

Often, we will need to write a function that returns another function. One way to

do this is to define a function inside of a function:

The return value of outer is the function inner. This is a case of a function

returning a function. In this example, inner is defined inside of outer. Although

this is a common pattern, we can also define inner outside of outer and still use the

same return statement. However, note that in this second example (unlike the first

example), inner doesn’t have access to variables defined within the outer function,

like x.

Questions
3.1 Draw an environment diagram for the following program.

def outer(n):

def inner(m):

return n - m

return inner

outer(61)

f = outer(10)

f(4)

3.2 Using the same definition of outer above, what is the return value of outer(5)(4)?

Control and Environments 9

Extra Questions
3.3 Draw the environment diagram that results from executing the code below.

from operator import add

six = 1

def ty(one, a):

summer = one(a, six)

return summer

six = ty(add, 6)

summer = ty(add, 6)

