
CS 61A Higher Order Functions and Sequences
Summer 2018 Discussion 2: June 26, 2018

1 Higher Order Functions
HOFs in Environment Diagrams
Recall that an environment diagram keeps track of all the variables that

have been defined and the values they are bound to. However, values are

not necessarily only integers and strings. Environment diagrams can model

more complex programs that utilize higher order functions.

def add_num(x):

return lambda y: x + y

add_two = add_num(2)

add_two(3)

Lambdas are represented similiarly to functions in environment diagrams,

but since they lack instrinsic names, the lambda symbol (λ) is used instead.

The parent of any function (including lambdas) is always the frame in which

the function is defined. It is useful to include the parent in environment

diagrams in order to find variables that are not defined in the current frame.

In the previous example, when we call add two (which is really the lambda

function), we need to know what x is in order to compute x + y. Since x is

not in the frame f2, we look at the frame’s parent, which is f1. There, we

find x is bound to 2.

As illustrated above, higher order functions that return a function have their

return value represented with a pointer to the function object.



2 Higher Order Functions and Sequences

A Note on Lambda Expressions
A lambda expression evaluates to a function, called a lambda function. In

the code above, lambda y: x + y is a lambda expression, and can be read

as a function that takes in one parameter y and returns x + y.

A lambda expression by itself evaluates to a function but does not bind it to

a name. Also note that the return expression of this function is not evaluated

until the lambda is called. This is similar to how defining a new function

using a def statement does not execute the functions body until it is later

called.

>>> what = lambda x : x + 5

>>> what

<function <lambda> at 0xf3f490>

Unlike def statements, lambda expressions can be used as an operator or

an operand to a call expression. This is because they are simply one-line

expressions that evaluate to functions.

>>> (lambda y: y + 5)(4)

9

>>> (lambda f, x: f(x))(lambda y: x + 1, 10)

11



Higher Order Functions and Sequences 3

Questions
1.1 Draw the environment diagram that results from executing the code below.

1 def curry2(h):

2 def f(x):

3 def g(y):

4 return h(x, y)

5 return g

6 return f

7 make_adder = curry2(lambda x, y: x + y)

8 add_three = make_adder(3)

9 five = add_three(2)



4 Higher Order Functions and Sequences

1.2 Draw the environment diagram that results from executing the code below.

1 n = 7

2 def f(x):

3 n = 8

4 return x + 1

5 def g(x):

6 n = 9

7 def h():

8 return x + 1

9 return h

10 def f(f, x):

11 return f(x + n)

12 f = f(g, n)

13 g = (lambda y: y())(f)



Higher Order Functions and Sequences 5

1.3 The following question is extremely difficult. Something like this would not

appear on the exam. Nonetheless, it’s a fun problem to try.

Draw the environment diagram that results from executing the code below.

Note that using the + operator with two strings results in the second string

being appended to the first. For example "C" + "S" concatenates the two

strings into one string "CS"

1 y = "y"

2 h = y

3 def y(y):

4 h = "h"

5 if y == h:

6 return y + "i"

7 y = lambda y: y(h)

8 return lambda h: y(h)

9 y = y(y)(y)



6 Higher Order Functions and Sequences

Writing Higher Order Functions

1.4 Write a function that takes in a function cond and a number n and prints

numbers from 1 to n where calling cond on that number returns True.

def keep_ints(cond, n):

"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> keep_ints(is_even, 5)

2

4

"""

1.5 Write a function similar to keep_ints like before, but now it takes in a

number n and returns a function that has one parameter cond. The returned

function prints out numbers from 1 to n where calling cond on that number

returns True.

def keep_ints(n):

"""Returns a function which takes one parameter cond and prints out

all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x):

... # Even numbers have remainder 0 when divided by 2.

... return x % 2 == 0

>>> keep_ints(5)(is_even)

2

4

"""



Higher Order Functions and Sequences 7

2 Sequences and Lists
A sequence is an ordered collection of values. It has two fundamental prop-

erties: length and element selection. In this discussion, we’ll explore one of

Python’s data types, the list, which implements this abstraction.

In Python, we can have lists of whatever values we want, be it numbers,

strings, functions, or even other lists! Furthermore, the types of the list’s

contents need not be the same. In other words, the list need not be homoge-

nous.

Lists can be created using square braces. Their elements can be accessed

(or indexed) with square braces. Lists are zero-indexed: to access the first

element, we must index at 0; to access the ith element, we must index at

i− 1.

We can also index with negative numbers. These begin indexing at the end

of the list, so the index −1 is equivalent to the index len(list) - 1 and

index −2 is the same as len(list) - 2.

Let’s try out some indexing:

>>> fantasy_team = ['aaron rodgers', 'desean jackson']

>>> print(fantasy_team)

['aaron rodgers', 'desean jackson']

>>> fantasy_team[0]

'aaron rodgers'

>>> fantasy_team[len(fantasy_team) - 1]

'desean jackson'

>>> fantasy_team[-1]

'desean jackson'

If we have two lists, we can use the + operator to create a new list with the

values of the original two lists, concatenated together.

>>> fish_names = ['Dory', 'Flounder']

>>> rabbit_names = ['Bugs Bunny', 'Officer Hopps']

>>> animal_names = fish_names + rabbit_names

>>> animal_names

['Dory', 'Flounder', 'Bugs Bunny', 'Officer Hopps']

Sequences also have a notion of length, the number of items stored in the

sequence. In Python,we can check how long a sequence is with the len

built-in function.

We can also check if an item exists within a list with the in statement.



8 Higher Order Functions and Sequences

>>> poke_team = ['Meowth', 'Mewtwo']

>>> len(poke_team)

2

>>> 'Meowth' in poke_team

True

>>> 'Pikachu' in poke_team

False

Questions
2.1 What would Python display?

>>> a = [1, 5, 4, [2, 3], 3]

>>> print(a[0], a[-1])

>>> len(a)

>>> 2 in a

>>> 4 in a

>>> a[3][0]



Higher Order Functions and Sequences 9

Slicing
If we want to access more than one element of a list at a time, we can use

a slice. Slicing a sequence is very similar to indexing. We specify a starting

index and an ending index, separated by a colon. Python creates a new

list with the elements from the starting index up to (but not including) the

ending index.

We can also specify a step size, which tells Python how to collect values for

us. For example, if we set step size to 2, the returned list will include every

other value, from the starting index until the ending index. A negative step

size indicates that we are stepping backwards through a list when collecting

values.

You can also choose not to specify any/all of the slice arguments. Python

will perform some default behaviour if this is the case:

• If the step size is left out, the default step size is 1.

• If the start index is left out, the default start index is the beginning of

the list.

• If the end index is left out, the default end index is the end of the list.

• If the step size is negative, the default start index becomes the end of

the list, and the default end index becomes the beginning the of the

list.

Thus, lst[:] creates a list that is identical to lst (a copy of lst). lst[::-1]

creates a list that has the same elements of lst, but reversed. Those rules

still apply if more than just the step size is specified e.g. lst[3::-1].

>>> directors = ['jenkins', 'spielberg', 'bigelow', 'kubrick']

>>> directors[:2]

['jenkins', 'spielberg']

>>> directors[1:3]

['spielberg', 'bigelow']

>>> directors[1:]

['spielberg', 'bigelow', 'kubrick']

>>> directors[0:4:2]

['jenkins', 'bigelow']

>>> directors[::-1]

['kubrick', 'bigelow', 'spielberg', 'jenkins']



10 Higher Order Functions and Sequences

Questions
2.2 What would Python display?

>>> a = [3, 1, 4, 2, 5, 3]

>>> a[1::2]

>>> a[:]

>>> a[1:-2]

>>> a[2:4:2]

>>> a[::2]

>>> a[::-1]



Higher Order Functions and Sequences 11

3 List Comprehensions
new_lst = []

for <name> in <iter exp>:

if <filter exp>:

new_lst += [<map_exp>]

return new_lst

A list comprehension is a compact way to create a list whose elements are

the results of applying a fixed expression to elements in another sequence.

[<map exp> for <name> in <iter exp> if <filter exp>]

It might be helpful to note that we can rewrite a list comprehension as an

equivalent for statment. See the example to the right.

Let’s break down an example:

[x * x - 3 for x in [1, 2, 3, 4, 5] if x % 2 == 1]

In this list comprehension, we are creating a new list after performing a

series of operations to our initial sequence [1, 2, 3, 4, 5]. We only keep

the elements that satisfy the filter expression x % 2 == 1 (1, 3, and 5). For

each retained element, we apply the map expression x*x - 3 before adding

it to the new list that we are creating, resulting in the output [-2, 6, 22].

Note: The if clause in a list comprehension is optional.

Questions
3.1 What would Python display?

>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]

>>> [i * i - i for i in [5, -1, 3, -1, 3] if i > 2]

>>> [[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]


