
CS 61A Recursion & Tree Recursion
Summer 2018 Discussion 3: June 28, 2018

1 Recursion
def factorial(n):

if n == 0 or n == 1:

return 1

else:

return n * factorial(n-1)

A recursive function is a function that calls itself. A good example is the

factorial function. Although we haven’t finished defining factorial, we

are still able to call it since the function body is not evaluated until the

function is called. Note that when n is 0 or 1, we just return 1. This is known

as the base case, and it prevents the function from infinitely recursing. Now

we can compute factorial(2) in terms of factorial(1), and factorial(3)

in terms of factorial(2), and factorial(4) – well, you get the idea.

There are three common steps in a recursive definition:

1. Figure out your base case: The base case is usually the simplest

input possible to the function. For example, factorial(0) is 1 by

definition. You can also think of a base case as a stopping condition

for the recursion. If you can’t figure this out right away, move on to

the recursive case and try to figure out the point at which we can’t

reduce the problem any further.

2. Make a recursive call with a simpler argument: Simplify your

problem, and assume that a recursive call for this new problem will

simply work. This is called the “leap of faith”. For factorial, we

reduce the problem by calling factorial(n-1).

3. Use your recursive call to solve the full problem: Remember

that we are assuming the recursive call works. With the result of the

recursive call, how can you solve the original problem you were asked?

For factorial, we just multiply (n− 1)! by n.



2 Recursion & Tree Recursion

Questions
1.1 Write a function that takes two numbers m and n and returns their product.

Assume m and n are positive integers. Use recursion, not mul or *!

Hint: 5*3 = 5 + 5*2 = 5 + 5 + 5*1.

For the base case, what is the simplest possible input for multiply?

For the recursive case, what does calling multiply(m - 1, n) do? What

does calling multiply(m, n - 1) do? Do we prefer one over the other?

def multiply(m, n):

"""

>>> multiply(5, 3)

15

"""



Recursion & Tree Recursion 3

1.2 Draw an environment diagram for the following code:

def rec(x, y):

if y > 0:

return x * rec(x, y - 1)

return 1

rec(3, 2)

Bonus question: what does this function do?



4 Recursion & Tree Recursion

1.3 Write a recursive function that takes in an integer n and prints out a count-

down from n to 1.

First, think about a base case for the countdown function. What is the

simplest input the problem could be given?

After you’ve thought of a base case, think about a recursive call with a

smaller argument that approches the base case. What happens if you call

countdown(n - 1)?

Then, put the base case and the recursive call together, and think about

where a print statement would be needed.

def countdown(n):

"""

>>> countdown(3)

3

2

1

"""

1.4 How can we change countdown to count up instead without modifying a lot

of the code?



Recursion & Tree Recursion 5

2 Tree Recursion
Consider a function that requires more than one recursive call. A simple

example is the recursive fibonacci function:

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

This type of recursion is called tree recursion, because it makes more than

one recursive call in its recursive case. If we draw out the recursive calls, we

see the recursive calls in the shape of an upside-down tree:

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, prob-

lems that are naturally solved using tree recursive procedures are generally

difficult to write iteratively. As a general rule of thumb, whenever you need

to try multiple possibilities at the same time, you should consider using tree

recursion.

Questions
2.1 I want to go up a flight of stairs that has n steps. I can either take 1 or 2

steps each time. How many different ways can I go up this flight of stairs?

Write a function count_stair_ways that solves this problem for me. Assume

n is positive.



6 Recursion & Tree Recursion

Before we start, what’s the base case for this question? What is the simplest

input?

What do count_stair_ways(n - 1) and count_stair_ways(n - 2) repre-

sent?Use those two recursive calls to write the recursive case:

def count_stair_ways(n):

2.2 Consider a special version of the count_stairways problem, where instead

of taking 1 or 2 steps, we are able to take up to and including k steps at

a time.

Write a function count_k that figures out the number of paths for this sce-

nario. Assume n and k are positive.

def count_k(n, k):

"""

>>> count_k(3, 3) # 3, 2 + 1, 1 + 2, 1 + 1 + 1

4

>>> count_k(4, 4)

8

>>> count_k(10, 3)

274

>>> count_k(300, 1) # Only one step at a time

1

"""


