
CS 61A Mutation & Data Abstraction
Summer 2018 Discussion 4: July 3, 2018

1 Mutable Lists
Let’s imagine you order a mushroom and cheese pizza from La Val’s, and

that they represent your order as a list:

>>> pizza = ['cheese', mushrooms']

A couple minutes later, you realize that you really want onions on the pizza.

Based on what we know so far, La Val’s would have to build an entirely new

list to add onions:

>>> pizza = ['cheese', mushrooms']

>>> new_pizza = pizza + ['onions'] # creates a new python list

>>> new_pizza

['cheese', mushrooms', 'onions']

>>> pizza # the original list is unmodified

['cheese', 'mushrooms']

This is silly, considering that all La Val’s had to do was add onions on top

of pizza instead of making an entirely new pizza.

We can fix this issue with list mutation. In Python, some objects, such

as lists and dictionaries, are mutable, meaning that their contents or state

can be changed over the course of program execution. Therefore, instead of

building a new pizza, we can just mutate pizza to add some onions!

>>> pizza.append('onions')

>>> pizza

['cheese', 'mushrooms', 'onions']

append is what’s known as a method, or a function that belongs to an object,

so we have to call it using dot notation. Don’t worry too much about the

details of methods; we will talk more about them later on in the course. For

now, here’s a list of useful list mutation methods:

1. append(el): Adds el to the end of the list

2. extend(lst): Extends the list by concatenating it with lst

3. insert(i, el): Insert el at index i (does not replace element but

adds a new one)



2 Mutation & Data Abstraction

4. remove(el): Removes the first occurrence of el in list, otherwise errors

5. pop(i): Removes and returns the element at index i

We can also use the familiar indexing operator with an assignment statement

to change an existing element in a list. For example, let’s say you want to

replace mushrooms on your pizza with tomatoes. We can index into the list

at index 1 and reassign it to ’tomatoes’ like so:

>>> pizza[1] = 'tomatoes'

>>> pizza

['cheese', 'tomatoes', 'onions']

Although lists and dictionaries are mutable, many other objects, such as

numeric types, tuples, and strings, are immutable, meaning they cannot be

changed once they are created.

Box-and-Pointer Diagrams
So far, we’ve been working with fairly simple lists whose contents we can

visualize in our heads. With the introduction of list mutation, programs

containing multiple list objects, especially nested lists, become very difficult

to keep track of.

To help us better visualize such programs, we can draw box-and-pointer

diagrams for lists. In a box-and-pointer diagram, each element in the list

goes into a box. The boxes are chained together to create a sequence. Prim-

itive values, like numbers, are written directly into the box. Non-primitive

values, such as other lists, are drawn outside of the box and are pointed to

with an arrow. You can also label each box with its index to make it easier

to read.

Below is a diagram for the following code:

lst1 = [1, 2, 3]

lst2 = [5, lst1, 6]

lst2[2] = [7, 8, 9]



Mutation & Data Abstraction 3

Questions
1.1 What would Python display? It may be helpful to draw the box and pointer

diagrams to the right in order to keep track of the state.

>>> lst1 = [1, 2, 3]

>>> lst2 = lst1

>>> lst1 is lst2

>>> lst2.extend([5, 6])

>>> lst1[4]

>>> lst1.append([-1, 0, 1])

>>> -1 in lst2

>>> lst2[5]

>>> lst3 = lst2[:]

>>> lst3.insert(3, lst2.pop(3))

>>> len(lst1)

>>> lst1[4] is lst3[6]

>>> lst3[lst2[4][1]]

>>> lst1[:3] is lst2[:3]

>>> lst1[:3] == lst3[:3]



4 Mutation & Data Abstraction

1.2 Write a function that takes in a value x, a value el, and a list and adds as

many el’s to the end of the list as there are x’s. Make sure to modify

the original list using list mutation techniques.

def add_this_many(x, el, lst):

""" Adds el to the end of lst the number of times x occurs

in lst.

>>> lst = [1, 2, 4, 2, 1]

>>> add_this_many(1, 5, lst)

>>> lst

[1, 2, 4, 2, 1, 5, 5]

>>> add_this_many(2, 2, lst)

>>> lst

[1, 2, 4, 2, 1, 5, 5, 2, 2]

"""

1.3 Write a function that takes in a list and reverses it in place, i.e. mutate the

given list itself, instead of returning a new list.

def reverse(lst):

""" Reverses lst in place.

>>> x = [3, 2, 4, 5, 1]

>>> reverse(x)

>>> x

[1, 5, 4, 2, 3]

"""



Mutation & Data Abstraction 5

2 Data Abstraction
Data abstraction is a powerful concept in computer science that allows pro-

grammers to treat code as objects. That way, programmers don’t have to

worry about how code is implemented — they just have to know what it

does.

Data abstraction mimics how we think about the world. For example, when

you want to drive a car, you don’t need to know how the engine was built

or what kind of material the tires are made of. You just have to know how

to turn the wheel and press the gas pedal.

Data abstraction is useful when dealing with compound values, or values

that consist of more than one component. An example of such a value is a

rational number, or a number than can be written as x / y, which consists

of a numerator and a denominator.

We can represent these types of values as abstract data types (ADTs).

An abstract data type consists of two types of functions:

• Constructors: functions that build the abstract data type.

• Selectors: functions that retrieve information from the data type.

Below are possible function signatures for the constructor and selectors of a

rational number ADT:

rational(numerator, denominator)

numer(rational)

denom(rational)

Here is how we might use this constructor and these selectors:

>>> half = rational(1, 2)

>>> numer(half)

1

>>> denom(half)

2

The following function multiplies together two rational numbers, returning

a new rational number.

def mul_rational(x, y):

return rational(numer(x) * numer(y),

denom(x) * denom(y))



6 Mutation & Data Abstraction

Questions
The 61A TAs have decided to call upon the power of data abstraction to

organize their discussion sections. To do so, they’ve created a discussion

abstract data type. A discussion contains three things:

• The name of the TA running the section

• The time the section starts, given as an integer

• A list of students enrolled in the section

Given this, the TAs come up with the following constructor and selectors:

• make discussion(ta, time, students): Creates and returns a new

discussion section.

• get ta(disc): Returns the TA running the given discussion section.

• get time(disc): Returns the start time of the given discussion section.

• get students(disc): Returns the list of students enrolled in the given

discussion section.

2.1 Implement add student, which takes in a discussion section and a string

representing a student’s name, and returns a new discussion with the new

student added to the roster. The list of students for the new discussion

should be a new list. Remember to use the constructor and selectors!

def add_student(disc, student):

""" Adds a student to this discussion.

>>> disc = make_discussion("Chris", 4, ["Alice", "Bob"])

>>> new_disc = add_student(disc, "Carol")

>>> get_students(new_disc)

["Alice", "Bob", "Carol"]

>>> get_students(disc)

["Alice", "Bob"]

"""



Mutation & Data Abstraction 7

Abstraction Violations
Notice how we did not need to know how the constructors and selectors in

the previous section were implemented in order to use them. This is what we

mean by the implementation and use of an abstract data type being separate.

In fact, you should never assume anything about how the constructors and

selectors for an abstract data type are implemented. Doing so is called a

data abstraction violation.

As an example, here is one implemenation for the rational constructor.

def rational(n, d):

return [n, d]

Given this constructor, the following would be considered a data abstraction

violation:

>>> frac1 = rational(3, 4)

>>> frac2 = rational(5, 6)

>>> frac1[0] * frac2[0]

15

This is because we assumed rationals were represented as lists instead of

accessing their elements using the selectors.

Questions
The TAs have decided to reveal the implementation of the discussion section

ADT. Use these function definitions to answer the next two questions:

def make_discussion(ta, time, students):

return [name, time, students]

def get_ta(disc):

return disc[0]

def get_time(disc):

return disc[1]

def get_students(disc):

return disc[2]



8 Mutation & Data Abstraction

2.2 The TAs have written the following code using the above data abstraction.

However, it contains some abstraction violations. Underline each occurence

of an abstraction violation. Then, if possible, write the correct line of code.

def check_start(disc1, disc2):

"""Checks whether disc1 and disc2 have the same starting time."""

return disc1[1] == disc2[1]:

def print_students(disc):

"""Prints the name of each student in the discussion."""

for student in disc[2]:

print(student)

def print_duplicates(disc1, disc2):

"""Prints each student that attended both disc1 and disc2."""

students_1, students_2 = get_students(disc1), get_students(disc2)

for i in range(len(students_1)):

if students_1[i] in students_2:

print(students_1[i])

2.3 A disgruntled student makes changes to the discussion data abstraction in an

attempt to disrupt the TAs’ ability to run section. The new implementation

is as follows:

def make_discussion(ta, time, students):

return {"ta" : ta, "time" : time, "students" : students}

def get_ta(disc):

return disc["ta"]

def get_time(disc):

return disc["time"]

def get_students(disc):

return disc["students"]

Would the code in the previous question, with the corrections you made,

still work with these changes? Would the code before removing abstraction

violations still work?


