CS 61A Trees and Orders of Growth
Summer 2018 Discussion 5: July 05, 2018

1 Trees

In computer science, trees are recursive data structures that are widely used in

various settings. The diagram to the right is an example of a tree.

Notice that the tree branches downward. In computer science, the root of a tree

starts at the top, and the leaves are at the bottom.
Some terminology regarding trees:

e Parent node: A node that has branches. Parent nodes can have multiple

branches.

e Child node: A node that has a parent. A child node can only belong to one

parent.

e Root: The top node of the tree. In our example, the node that contains 7 is
the root.

e Label: The value at a node. In our example, all of the integers are values.

e Leaf: A node that has no branches. In our example, the nodes that contain
—4, 0, 6, 17, and 20 are leaves.

e Branch: A subtree of the root. Note that trees have branches, which are

trees themselves: this is why trees are recursive data structures.

e Depth: How far away a node is from the root. In other words, the number
of edges between the root of the tree to the node. In the diagram, the node
containing 19 has depth 1; the node containing 3 has depth 2. Since there are
no edges between the root of the tree and itself, the depth of the root is 0.

e Height: The depth of the lowest leaf. In the diagram, the nodes containing
—4, 0, 6, and 17 are all the “lowest leaves,” and they have depth 4. Thus, the
entire tree has height 4.

In computer science, there are many different types of trees. Some vary in the

number of branches each node has; others vary in the structure of the tree.

2 Trees and Orders of Growth

Implementation

A tree has both a value for the root node and a sequence of branches, which are # Constructor

also trees. In our implementation, we represent the branches as a list of trees. Since def tree(label, branches=[]):
a tree is an abstract data type, our choice to use lists is just an implementation for branch in branches:
detail. assert is_tree(branch)

return [label] + list(branches)
e The arguments to the constructor tree are the value for the root node and a

list of branches.
Selectors

e The selectors for these are label and branches. def label(tree):

return tree[0]
Note that branches returns a list of trees and not a tree directly. It’s important to

distinguish between working with a tree and working with a list of trees. def branches(tree):
We have also provided a convenience function, is_leaf. return treel1:]
Let’s try to create the tree below. # For convenience

def is_leaf(tree):
return not branches(tree)

(D
(3) ©
» © ©
Example tree construction
t = tree(1,
[tree(3,
[tree(4),
tree(5),
tree(6)]),
tree(2)])

Trees and Orders of Growth 3

Questions

1.1 Consider a tree ADT t constructed by calling tree(1, [tree(2), tree(4)]). For
each of the following expressions, answer these two questions:

e What does the expression evaluate to?

e Does the expression violate any abstraction barriers? If so, write an equivalent

expression that does not violate abstraction barriers.

1. label(t)

2. t[e]

3. label(branches(t)[0])

4. is_leaf(t[1:1[11)

5. [label(b) for b in branches(t)]

6. Challenge: branches(tree(5, [t, tree(3)]))[0][0]

1.2 Write a function that returns the number of branches of a tree.

def num_branches(t)
"""Return the number of branches of a tree.

>>> t = tree(1, [tree(2), tree(3)]1)
>>> num_branches(t)
2

1.3 Write a function that returns the largest number in a tree.

def tree_max(t):
"""Return the maximum label in a tree.

>>> t = tree(4, [tree(2, [tree(1)]), tree(10)]1)
>>> tree_max(t)
10

4 Trees and Orders of Growth

1.4 Write a function that returns the height of a tree. Recall that the height of a tree
is the length of the longest path from the root to a leaf.

def height(t):
"""Return the height of a tree.

>>> t = tree(3, [tree(5, [tree(1)]), tree(2)])
>>> height(t)
2

1.5 Define the function tree_map, which takes in a tree and a one-argument function as
arguments and returns a new tree which is the result of mapping the function over

the entries of the input tree.

def tree_map(fn, t):
"""Maps the function fn over the entries of tree and returns the
result in a new tree.

>>> numbers = tree(1,

[tree(2,
[tree(3),
tree(4)]),
tree(5,
[tree(6,
[tree(7)]),
tree(8)DD)
>>> print_tree(tree_map(lambda x: 2x*x, numbers))
2
4
8
16
32
64

128
256

1.6

Trees and Orders of Growth 5

An expression tree is a tree that contains a function for each non-leaf node,
which can be either ’+’ or ’%’. All leaves are numbers. Implement eval_tree,
which evaluates an expression tree to its value. You may want to use the functions
sum and prod, which take a list of numbers and compute the sum and product
respectively.

def eval_tree(tree):
"""Evaluates an expression tree with functions the root.
>>> eval_tree(tree(1))
1
>>> expr = tree('x', [tree(2), tree(3)])
>>> eval_tree(expr)
6
>>> eval_tree(tree('+', [expr, tree(4), tree(5)]1))
15

6 Trees and Orders of Growth

1.7 Write a function that takes in a tree and a value x and returns a list containing the
nodes along the path required to get from the root of the tree to a node containing
X.

If x is not present in the tree, return None. Assume that the entries of the tree are

unique.

For the following tree, find_path(t, 5) should return [2, 7, 6, 5]

5

def find_path(tree, x):

nun

>>> find_path(t, 5)
[2, 7, 6, 5]
>>> find_path(t, 10) # returns None

nun

1.8 Write a function that takes in a tree and a depth k and returns a new tree that

contains only the first k levels of the original tree.

For example, if t is the tree shown in the previous question, then prune(t, 2)

©,
D ©
(® (©)

def prune(t, k):

should return the following tree.

Trees and Orders of Growth 7

Y Orders of Grovvth

When we talk about the efficiency of a function, we are often interested in the
following: as the size of the input grows, how does the runtime of the function

change? And what do we mean by “runtime”?

e square(1) requires one primitive operation: * (multiplication). square(100)
also requires one. No matter what input n we pass into square, it always takes

one operation.

input | function call | return value | number of operations
1 square(1) 1-1 1
2 square(2) 2.2 1
100 square(100) 100 - 100 1
n square(n) n-n 1

e factorial(1) requires one multiplication, but factorial(100) requires 100
multiplications. As we increase the input size of n, the runtime (number of

operations) increases linearly proportional to the input.

input | function call return value number of operations
1 factorial(1) 1-1
2 factorial(2) 2-1-1
100 | factorial(100) 100-99---1-1 100
n factorial(n) | n-(n—1)---1-1 n

Here are some general guidelines for finding the order of growth for the runtime of

a function:

e If the function is recursive or iterative, you can subdivide the problem as seen

above:

— Count the number of recursive calls/iterations that will be made in terms

of input size n.

— Find how much work is done per recursive call or iteration in terms of

input size n.

The answer is usually the product of the above two, but be sure to pay atten-

tion to control flow!

e If the function calls helper functions that are not constant-time, you need to

take the runtime of the helper functions into consideration.
e We can ignore constant factors. For example, ©(1000000n) = ©(n).

e We can also ignore lower-order terms. For example, ©(n® 4+ n? + 4n + 399) =

©(n?). This is because the n® term dominates as n gets larger.

8 Trees and Orders of Growth

Big—Theta Notation

For expressing complexity, we use what is called big © (Theta) notation. For

example, if we say the running time of a function foo is in ©(n?), we mean that

the running time of the process will grow proportionally with the square of the size
of the input as it becomes very large.

e Ignore lower order terms: If a function requires n® + 3n? + 5n + 10 oper-

ations with a given input n, then the runtime of this function is in ©(n?). As

n gets larger, the lower order terms (10, 5n, and 3n?) all become insignificant

compared to n3.

e Ignore constants: If a function requires 5n operations with a given input n,
then the runtime of this function is in ©(n). We are only concerned with how
the runtime grows asymptotically with the input, and since 5n is still asymp-
totically linear; the constant factor does not make a difference in runtime

analysis.

Kinds of Growth

Here are some common orders of growth, ranked from no growth to fastest growth:
1) — constant time takes the same amount of time regardless of input size

e O(logn) — logarithmic time

o(

(
©(n) — linear time
e O(nlogn) — linearithmic time
(n

)

%), ©(n?), etc. — polynomial time

O(2"), ©(3™), etc. — exponential time (considered “intractable”; these are
really, really horrible)

In addition, some programs will never terminate if they get stuck in an infinite

loop.

Trees and Orders of Growth

Questions
What is the order of growth for the following functions?

2.1 def sum_of_factorial(n):
if n ==
return 1
else:
return factorial(n) + sum_of_factorial(n - 1)

2.2 def bonk(n):
total = @
while n >= 2:
total +=n
n=n/?2
return total

2.3 def mod_7(n):
ifn%7==0:
return 0
else:
return 1 + mod_7(n - 1)

Extra Questions

2.4 def bar(n):
ifn%2==1:
return n + 1
return n

def foo(n):
if n<1:
return 2
ifn%2==20:
return foo(n - 1) + foo(n - 2)
else:
return 1 + foo(n - 2)

What is the order of growth of foo(bar(n))?

9

