
CS 61A Scheme
Summer 2018 Discussion 7: June 12, 2018

1 Introduction
In the next part of the course, we will be working with the Scheme programming

language. In addition to learning how to write Scheme programs, we will eventually

write a Scheme interpreter in Project 4!

Scheme is a dialect of the Lisp programming language, a language dating back

to 1958. The popularity of Scheme within the programming language community

stems from its simplicity – in fact, previous versions of CS 61A were taught in the

Scheme language.

2 Scheme Expressions
Primitive expressions in Scheme include self-evaluating expressions, like numbers

and booleans, and symbols.

All non-primitive expressions in Scheme are combinations. These are expressions

that combine other expressions in a set of parentheses like so:

(<operator> <operand1> <operand2> ...)

where <operator>, <operand1>, <operand2> are all Scheme expressions. A combi-

nation can have zero or more operands, but it must have an operator.

Combinations are one of two things:

1. Call expressions, if the <operator> is a procedure.

2. Special form expressions, if the <operator> is a special form.

Call expressions
Call expressions apply a procedure to some arguments.

(<operator> <operand1> <operand2> ...)

Call expressions in Scheme work exactly like they do in Python. To evaluate them:

1. Evaluate the operator to get a procedure.

2. Evaluate each of the operands from left to right.

3. Apply the value of the operator to the evaluated operands.

For example, consider the call expression (+ 1 2). First, we evaluate the symbol +

to get the built-in addition procedure. Then we evaluate the two operands 1 and 2

to get their corresponding atomic values. Finally, we apply the addition procedure

to the values 1 and 2 to get the return value 3.

Operators may be symbols, such as + and *, or more complex expressions, as long

as they evaluate to procedure values.



2 Scheme

scm> (- 1 1) ; 1 - 1

0

scm> (/ 8 4 2) ; 8 / 4 / 2

1

scm> (* (+ 1 2) (+ 1 2)) ; (1 + 2) * (1 + 2)

9

Some important built-in functions you’ll want to know are:

• +, -, *, /

• =, >, >=, <, <=

• quotient, modulo

• even?, odd?

Questions
2.1 What would Scheme display?

scm> (+ 1)

scm> (* 3)

scm> (+ (* 3 3) (* 4 4))

scm> (+ 1 (modulo 10 3) (quotient 10 3))

scm> (> (+ 2 3) (* 2 3))

scm> (even? (quotient (* 4 6) 2))

scm> (= (+ (- (* 5 4) 3) 2) 1)



Scheme 3

Special Form Expressions
Special form expressions contain a special form as the operator. Special form

expressions do not follow the same rules of evaluation as call expressions. Each

special form has its own rules of evaluation – that’s what makes them special!

The special forms we’ll see in today’s discussion include if and, or, lambda, and

define.

If Expression
The if special form allows for control flow in our programs. An if expression looks

like this:

(if <predicate> <if-true> [if-false])

<predicate> and <if-true> are required expressions an [if-false] is and optional

expression.

The rules for evaluation are as follows:

1. Evaluate <predicate>.

2. If <predicate> evaluates to a truth-y value, evaluate <if-true> and return

its value. Otherwise, evaluate [if-false] if provided and return its value.

This is a special form because not all operands will be evaluated! Only one of the

second and third operands is evaluated, depending on the value of the first operand.

Remember that only #f is a false-y value in Scheme; everything else is truth-y.

scm> (if (< 4 5) 1 2)

1

scm> (if #f (/ 1 0) 42)

42

scm> (if (= (+ 1 2) 3) 'equal)

equal

Boolean Operators
Like Python, Scheme also has the boolean operators and, or, and not. and and or

are special forms because they are short-circuiting operators.

• and takes in any amount of operands and evaluates these operands from left to

right until one evaluates to a false-y value. It either returns that first false-y

value or the value of the last expression if all operands evaluate to a truth-y

value.

• or takes in any amount of operands and evaluates these operands from left to

right until one evaluates to a truth-y value. It either returns that first truth-y

value or the value of the last expression if all operands evaluate to a false-y

value.



4 Scheme

• not takes in a single operand, evaluates it, and returns its opposite truthiness

value. Because its one operand is always evaluated, not is a regular procedure

rather than a special form.

scm> (and 25 32)

32

scm> (or #f (< 4 3) (= 1 2))

#f

scm> (or 1 2) ; Short-circuit

1

scm> (and #f 2) ; Short-circuit

#f

scm> (not (odd? 10)) ; Not a special form!

#t

Questions
2.1 What would Scheme display?

scm> (if (or #t (/ 1 0)) 1 (/ 1 0))

scm> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (* 3 2)))

scm> ((if (< 4 3) + -) 4 100)

scm> (if 0 1 2)



Scheme 5

Lambda and Define
All Scheme procedures are lambda procedures. One way to create a procedure is

to use the lambda special form.

(lambda (<param1> <param2> ...) <body>)

This expression creates a lambda function with the given parameters and body,

but does not evaluate the body. Just like in Python, the body expression is not

evaluated until the lambda function is called and thus applied to some argument

values. The fact that neither operand is evaluated is what makes lambda a special

form.

Another similarity to Python is that lambda expressions do not assign the returned

function to any name. We can assign the value of an expression to a name with the

define special form:

(define <name> <expr>)

For example, (define square (lambda (x) (* x x))) creates a lambda procedure

that squares its argument and assigns that procedure to the name square.

The second version of the define special form is a shorthand for this function

definition:

(define (<name> <param1> <param2 ...>) <body>)

This expression creates a function with the given parameters and body and binds

it to the given name.

scm> (define square (lambda (x) (* x x))) ; Bind the lambda function to the name square

square

scm> (define (square x) (* x x)) ; Equivalent to the line above

square

scm> square

(lambda (x) (* x x))

scm> (square 4)

16

Questions
2.2 Write two Scheme expressions that are equivalent to the following Python statement:

cat = lambda meow, purr: meow + purr

2.3 Write a function that returns the nth Fibonacci number.

(define (fib n)



6 Scheme

3 Pairs and Lists
Pairs
Scheme pairs are compound data types that hold exactly two elements. Pairs are

displayed in the interpreter with a dot in between the two elements.

Here are the procedures to construct and select from pairs:

• (cons x y) constructs a pair with elements x and y

• (car p) gets the first element of a pair p

• (cdr p) gets the second element of a pair p

scm> (define a (cons 2 3))

a

scm> a

(2 . 3)

scm> (car a)

2

scm> (cdr a)

3

Lists
Scheme lists implement an abstract data type known as a linked list with a sequence

of pairs. We define a list to be one of two things:

• the empty list, nil

• a pair whose second element is a list

Linked lists are recursive data structures. The base case is the empty list.

We can use the same procedures used to construct and select from pairs to construct

and select from lists:

• (cons first rest) constructs a list with the given first element and rest of

the list

• (car lst) gets the first item of the list

• (cdr lst) gets the rest of the list

scm> nil

()

scm> (define lst (cons 1 (cons 2 (cons 3 nil))))

lst

scm> lst

(1 2 3)

scm> (car lst)

1

scm> (cdr lst)

(2 3)



Scheme 7

scm> (car (cdr lst))

2

scm> (cdr (cdr (cdr lst)))

()

In general, the rule for displaying a pair is as follows: a dot separates the car

and cdr fields of a pair. However, if the dot is immediately followed by an open

parenthesis, then remove the dot and the parenthesis pair. Thus, (0 . (1 . 2))

becomes (0 1 . 2). Intuitively, a dot will be followed by an open parenthesis if

the cdr of a pair is another pair.

scm> (cons 1 (cons 2 3))

(1 2 . 3)

scm> (cons 1 (cons 2 (cons 3 nil)))

(1 2 3)

Two other common ways of creating lists is using the built-in list procedure or the

quote special form:

• The list procedure takes in an arbitrary amount of arguments. Because

it is a procedure, all operands are evaluated when list is called. A list is

constructed with the values of these operands and is returned.

• The quote special form takes in a single operand. It returns this operand

exactly as is, without evaluating it. Note that this special form can be used

to return any value, not just a list.

scm> (list 1 2 3)

(1 2 3)

scm> (quote (1 2 3))

(1 2 3)

scm> '(1 2 3) ; Equivalent to the previous quote expression

(1 2 3)

To check if a list is a well-formed list (i.e. it fits one of the descriptions in the

definition above), use the predicate procedure list?.

Box-and-pointer Diagrams
We can draw box-and-pointer diagrams to help us visualize Scheme pairs and lists.

A pair is represented as two boxes, each containing one element of the pair. For

example, to draw the pair constructed by (cons 1 2):

To draw well-formed lists, draw a series of pairs connected by arrows. Specifically,

the first item in each pair corresponds to an item in the list. The second item in

each pair is an arrow to the rest of the list. Here is the list (1 2 3):



8 Scheme

Questions
3.1 What would Scheme display?

scm> (cons 10 (cons 11))

scm> (car (cons 10 (cons 11 nil)))

scm> (cdr (cons 10 (cons 11 nil)))

scm> (cons 5 '(6 7 8))

scm> '(1 . (2 3))

scm> (define a 10)

a

scm> (list 8 9 a 11) ; list procedure evaluates all operands

scm> '(8 9 a 11) ; quote special form does not evaluate operand

scm> (list? (cons 1 2))

scm> (list? (cons 1 (cons 2 '())))

3.2 Draw out a box-and-pointed diagram for the following list:

scm> (define nested-lst (list 1 (cons 2 3) '(4 5 6) 7))

nested-lst

Then, write out what Scheme would display for the following expressions:

scm> (cdr nested-lst)

scm> (cdr (car (cdr nested-lst)))

scm> (cons (car nested-list) (car (cdr (cdr nested-list))))



Scheme 9

3.3 Write a function which takes two lists and concatenates them.

Notice that simply calling (cons a b) would not work because it will create a deep

list.

(define (concat a b)

scm> (concat '(1 2 3) '(2 3 4))

(1 2 3 2 3 4)

3.4 Write a function that takes an element x and a non-negative integer n, and returns

a list with x repeated n times.

(define (replicate x n)

scm> (replicate 5 3)

(5 5 5)



10 Scheme

3.5 A run-length encoding is a method of compressing a sequence of letters. The

list (a a a b a a a a) can be compressed to ((a 3) (b 1) (a 4)), where

the compressed version of the sequence keeps track of how many letters appear

consecutively.

Write a function that takes a compressed sequence and expands it into the original

sequence. Hint: You may want to use concat and replicate.

(define (uncompress s)

scm> (uncompress '((a 1) (b 2) (c 3)))

(a b b c c c)

3.6 Write a function that takes a procedure and applies it to every element in a given

list.

(define (map fn lst)

scm> (map (lambda (x) (* x x)) '(1 2 3))

(1 4 9)

3.7 Write a function that takes a procedure and applies to every element in a given

nested list.

The result should be a nested list with the same structure as the input list, but

with each element replaced by the result of applying the procedure to that element.

Use the built-in list? procedure to detect whether a value is a list.

(define (deep-map fn lst)

scm> (deep-map (lambda (x) (* x x)) '(1 2 3))

(1 4 9)

scm> (deep-map (lambda (x) (* x x)) '(1 ((4) 5) 9))

(1 ((16) 25) 81)



Scheme 11

4 Extra Questions
4.1 Fill in the following to complete an abstract tree data type:

(define (make-tree label branches) (cons label branches))

(define (label tree)

(define (branches tree)

4.2 Using the abstract data type above, write a function that sums up the entries of a

tree, assuming that the entries are all numbers.

Hint: you may want to use the map function you defined above, and also write a

helper function for summing up the entries of a list.

(define (tree-sum tree)

4.3 Using the abstract data type above, write a function that creates a new tree where

the entries are the product of the entries along the path to the root in the original

tree.

Hint: you may want to write a helper function that keeps track of the current

product.

3

0

10 2

8 −2

−3

3

0

0 0

24 −6

18

(define (path-product-tree t)


