
CS 61A Mutable Trees and Mutable Functions
Summer 2018 Discussion 9: July 19, 2018

1 Mutable Trees
Recall the tree abstract data type: a tree is defined as having a label and some

branches. Previously, we implemented the tree abstraction using Python lists. Let’s

look at another implementation using objects instead:

class Tree:

def __init__(self, label, branches=[]):

for b in branches:

assert isinstance(b, Tree)

self.label = label

self.branches = branches

def is_leaf(self):

return not self.branches

Notice that with this implementation we can mutate a tree using attribute assign-

ment, which wasn’t possible in the previous implementation using lists.

>>> t = Tree(3, [Tree(4), Tree(5)])

>>> t.label = 5

>>> t.label

5

Questions
1.1 What would Python display? If you believe an expression evaluates to a Tree object,

write Tree.

>>> t0 = Tree(0)

>>> t0.label

>>> t0.branches

>>> t1 = Tree(0, [1, 2]) # Is this a valid tree?

>>> t2 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])

>>> t2.branches[0]

>>> t2.branches[1].branches[0].label

2 Mutable Trees and Mutable Functions

1.2 Define a function make even which takes in a tree t whose values are integers, and

mutates the tree such that all the odd integers are increased by 1 and all the even

integers remain the same.

def make_even(t):

"""

>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4), Tree(5)])

>>> make_even(t)

>>> t.label

2

>>> t.branches[0].branches[0].label

4

"""

1.3 Define a function square tree(t) that squares every value in the non-empty tree

t. You can assume that every value is a number.

def square_tree(t):

"""Mutates a Tree t by squaring all its elements."""

1.4 Assuming that every value in t is a number, let’s define average(t), which returns

the average of all the values in t.

def average(t):

"""

Returns the average value of all the nodes in t.

>>> t0 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])

>>> average(t0)

1.5

>>> t1 = Tree(8, [t0, Tree(4)])

>>> average(t1)

3.0

"""

Mutable Trees and Mutable Functions 3

2 Mutable Functions in Python
Until now, you’ve been able to access names in parent frames, but you have not

been able to modify them. The nonlocal keyword can be used to modify a binding

in a parent frame. For example, consider stepper, which uses nonlocal to modify

num:

def stepper(num):

def step():

nonlocal num # declares num as a nonlocal name

num = num + 1 # modifies num in the stepper frame

return num

return step

>>> step1 = stepper(10)

>>> step1() # Modifies and returns num

11

>>> step1() # num is maintained across separate calls to step

12

>>> step2 = stepper(10) # Each returned step function keeps its own state

>>> step2()

11

As illustrated in this example, nonlocal is useful for maintaining state across dif-

ferent calls to the same function.

However, there are two important caveats with nonlocal names:

• Global names cannot be modified using the nonlocal keyword.

• Names in the current frame cannot be overridden using the nonlocal key-

word. This means we cannot have both a local and nonlocal binding with the

same name in a single frame.

Because nonlocal lets you modify bindings in parent frames, we call functions that

use it mutable functions.

4 Mutable Trees and Mutable Functions

Questions
2.1 Draw the environment diagram for the following code.

def stepper(num):

def step():

nonlocal num

num = num + 1

return num

return step

s = stepper(3)

s()

s()

Mutable Trees and Mutable Functions 5

2.2 Given the definition of make shopkeeper below, draw the environment diagram.

def make_shopkeeper(total_gold):

def buy(cost):

nonlocal total_gold

if total_gold < cost:

return 'Go farm some more champions'

total_gold = total_gold - cost

return total_gold

return buy

infinity_edge, zeal, gold = 3800, 1100, 3800

shopkeeper = make_shopkeeper(gold - 1000)

shopkeeper(zeal)

shopkeeper(infinity_edge)

6 Mutable Trees and Mutable Functions

2.3 Write a function that takes in a number n and returns a one-argument function.

The returned function takes in a function that is used to update n. It prints the

updated n value and returns a function that has the same behavior as itself.

def memory(n):

"""

>>> f = memory(10)

>>> f = f(lambda x: x * 2)

20

>>> f = f(lambda x: x - 7)

13

>>> f = f(lambda x: x > 5)

True

"""

Mutable Trees and Mutable Functions 7

2.4 The bathtub below simulates an epic battle between Finn and Kylo Ren over a

populace of rubber duckies. Fill in the body of ducky so that all doctests pass.

def bathtub(n):

"""

>>> annihilator = bathtub(500) # the force awakens...

>>> kylo_ren = annihilator(10)

>>> kylo_ren()

490 rubber duckies left

>>> rey = annihilator(-20)

>>> rey()

510 rubber duckies left

>>> kylo_ren()

500 rubber duckies left

"""

def ducky_annihilator(rate):

def ducky():

return ducky

return ducky_annihilator

8 Mutable Trees and Mutable Functions

3 Mutable Functions in Scheme
We can also create mutable functions in Scheme. In Python, when we want to

modify a binding in a parent frame, we declare it to be nonlocal at the start of the

function and then assign to the name as normal.

In Scheme, we don’t need to declare which bindings from a parent frame we wish

to modify. Instead, we use a new special form call set! when we want to modify

an existing binding (regardless of whether that binding exists in the current frame

or a parent frame).

Just like the define special form, set! takes in two operands: the symbol to be

re-assigned and an expression that should be evaluated and assigned to that symbol.

(set! <symbol> <expression>)

Here’s the same stepper function from earlier, now written in Scheme.

(define (stepper num)

(define (step)

(set! num (+ num 1))

num)

step)

set! will always modify the most local binding for that symbol that exists. In other

words, if the symbol is bound in the current frame, set! works the same as define.

Otherwise, it proceeds through parent frames until it finds the symbol, and then

re-binds it in that frame. If the binding does not exist anywhere within the current

environment, set! will error.

Unlike nonlocal, set! can even modify bindings in the global frame. For example:

scm> (define count 0)

count

scm> (define (increment) (set! count (+ count 1)))

increment

scm> (increment)

scm> (increment)

scm> (increment)

scm> count

3

Mutable Trees and Mutable Functions 9

Questions
3.1 Write a procedure make-piggy-bank, which returns a one-argument procedure (which

we’ll call a piggy bank). A piggy bank starts with nothing inside it. Each time you

call it with a positive number, that amount is added to the bank’s total. If you

instead pass in number less than or equal to 0, the piggy bank should reset its total

to 0 and then return the old total.

(define (make-piggy-bank)

scm> (define piggy-bank (make-piggy-bank))

piggy-bank

scm> (piggy-bank 5) ; add $5

scm> (piggy-bank 10) ; add $10

scm> (piggy-bank 3) ; add $3

scm> (piggy-bank 0) ; dump the money out

18

scm> (piggy-bank 4) ; add $4

scm> (piggy-bank 0) ; dump the money out

4

