
CS 61A Streams and Tail Recursion
Summer 2018 Discussion 10: July 24, 2018

1 Streams
In Python, we can use iterators to represent infinite sequences (for example, the

generator for all natural numbers). However, Scheme does not support iterators.

Let’s see what happens when we try to use a Scheme list to represent an infinite

sequence of natural numbers:

scm> (define (naturals n)

(cons n (naturals (+ n 1))))

naturals

scm> (naturals 0)

Error: maximum recursion depth exceeded

Because cons is a regular procedure and both its operands must be evaluted before

the pair is constructed, we cannot create an infinite sequence of integers using a

Scheme list.

Instead, our Scheme interpreter supports streams, which are lazy Scheme lists. The

first element is represented explicitly, but the rest of the stream’s elements are

computed only when needed. Computing a value only when it’s needed is also

known as lazy evaluation.

scm> (define (naturals n)

(cons-stream n (naturals (+ n 1))))

naturals

scm> (define nat (naturals 0))

nat

scm> (car nat)

0

scm> (car (cdr-stream nat))

1

scm> (car (cdr-stream (cdr-stream nat)))

2

We use the special form cons-stream to create a stream:

(cons-stream <operand1> <operand2>)

cons-stream is a special form because the second operand is not evaluated when

evaluating the expression. To evaluate this expression, Scheme does the following:

1. Evaluate the first operand.

2. Construct a promise containing the second operand.

3. Return a pair containing the value of the first operand and the promise.



2 Streams and Tail Recursion

To actually get the rest of the stream, we must call cdr-stream on it to force

the promise to be evaluated. Note that this argument is only evaluated once and

is then stored in the promise; subsequent calls to cdr-stream returns the value

without recomputing it. This allows us to efficiently work with infinite streams like

the naturals example above. We can see this in action by using a non-pure function

to compute the rest of the stream:

scm> (define (compute-rest n)

...> (print 'evaluating!)

...> (cons-stream n nil))

compute-rest

scm> (define s (cons-stream 0 (compute-rest 1)))

s

scm> (car (cdr-stream s))

evaluating!

1

scm> (car (cdr-stream s))

1

Here, the expression compute-rest 1 is only evaluated the first time cons-stream

is called, so the symbol evaluating! is only printed the first time.

Streams are very similar to Scheme lists in that they are also recursive structures.

Just like the cdr of a Scheme list is either another Scheme list or nil, the cdr-stream

of a stream is either a stream or nil. The difference is that whereas both arguments

to cons are evaluated upon calling cons, the second argument to cons-stream isn’t

evaluated until the first time that cdr-stream is called.

Here’s a summary of what we just went over:

• nil is the empty stream

• cons-stream constructs a stream containing the value of the first operand and

a promise to evaluate the second operand

• car returns the first element of the stream

• cdr-stream computes and returns the rest of stream



Streams and Tail Recursion 3

Questions
1.1 What would Scheme display?

scm> (define (has-even? s)

(cond ((null? s) #f)

((even? (car s)) #t)

(else (has-even? (cdr-stream s)))))

has-even?

scm> (define (f x) (* 3 x))

f

scm> (define nums (cons-stream 1 (cons-stream (f 3) (cons-stream (f 5) nil))))

nums

scm> nums

scm> (cdr nums)

scm> (cdr-stream nums)

scm> nums

scm> (define (f x) (* 2 x))

f

scm> (cdr-stream nums)

scm> (cdr-stream (cdr-stream nums))

scm> (has-even? nums)

1.2 Write a function range-stream which takes a start and end, and returns a stream

that represents the integers between start and end - 1 (inclusive).

(define (range-stream start end)

(if (___________________________________________________________________________________)

nil

(cons-stream _________________________________________________________________________)))

scm> (define s (range-stream 1 5))

s

scm> (car (cdr-stream s))

2



4 Streams and Tail Recursion

1.3 Write a function slice which takes in a stream s, a start, and an end. It should

return a Scheme list that contains the elements of s between index start and end,

not including end. If the stream ends before end, you can return nil.

(define (slice s start end)

scm> (define nat (naturals 0)) ; See naturals procedure on page 1

nat

scm> (slice nat 4 12)

(4 5 6 7 8 9 10 11)

1.4 Since streams only evaluate the next element when they are needed, we can combine

infinite streams together for interesting results! Use it to define a few of our favorite

sequences. We’ve defined the function combine-with for you below, as well as an

example of how to use it to define the stream of even numbers.

(define (combine-with f xs ys)

(if (or (null? xs) (null? ys))

nil

(cons-stream

(f (car xs) (car ys))

(combine-with f (cdr-stream xs) (cdr-stream ys)))))

scm> (define evens (combine-with + (naturals 0) (naturals 0)))

evens

scm> (slice evens 0 10)

(0 2 4 6 8 10 12 14 16 18)

For these questions, you may use the naturals stream in addition to combine-with.

i. (define factorials

scm> (slice factorials 0 10)

(1 1 2 6 24 120 720 5040 40320 362880)

(Continued on next page)



Streams and Tail Recursion 5

ii. (define fibs

scm> (slice fibs 0 10)

(0 1 1 2 3 5 8 13 21 34)

iii. Write exp, which returns a stream where the nth term represents the degree-n

polynomial expantion for ex, which is
∑n

i=0 x
i/i!.

You may use factorials in addition to combine-with and naturals in your

solution.

(define (exp x)

scm> (slice (exp 2) 0 5)

(1 3 5 6.333333333 7 7.266666667)



6 Streams and Tail Recursion

2 Tail Recursion
Scheme implements tail-call optimization, which allows programmers to write re-

cursive functions that use a constant amount of space. A tail call occurs when a

function calls another function as its last action of the current frame. In this

case, the frame is no longer needed, and we can remove it from memory. In other

words, if this is the last thing you are going to do in a function call, we can reuse

the current frame instead of making a new frame.

Consider this implementation of factorial.

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

The recursive call occurs in the last line, but it is not the last expression evaluated.

After calling (fact (- n 1)), the function still needs to multiply that result with

n. The final expression that is evaluated is a call to the multiplication function, not

fact itself. Therefore, the recursive call is not a tail call.

We can rewrite this function using a helper function that remembers the temporary

product that we have calculated so far in each recursive step.

(define (fact n)

(define (fact-tail n result)

(if (= n 0)

result

(fact-tail (- n 1) (* n result))))

(fact-tail n 1))

fact-tail makes a single recursive call to fact-tail, and that recursive call is the

last expression to be evaluated, so it is a tail call. Therefore, fact-tail is a tail

recursive process. We say that a recursive function is tail recursive if all of its

recursive calls are tail calls.

Using a constant number of frames
Tail recursive processes can use a constant amount of memory because each recursive

call frame does not need to be saved.

Our original implementation of fact required the program to keep each frame open

because the last expression multiplies the recursive result with n. Therefore, at each

frame, we need to remember the current value of n.

In contrast, the tail recursive fact-tail does not require the interpreter to remem-

ber the values for n or result in each frame. Instead, we can just update the value

of n and result of the current frame! Therefore, we can keep reusing a single frame

to complete this calculation.



Streams and Tail Recursion 7

Tail context
When trying to identify whether a given function call within the body of a function

is a tail call, we look for whether the call expression is in tail context.

Given that each of the following expressions is the last expression in the body of

the function, we consider the tail context of each expression to be:

• the second or third operand in an if expression

• any of the non-predicate sub-expressions in a cond expression (i.e. the second

expression of each clause)

• the last operand in an and or an or expression

• the last operand in a begin expression’s body

• the last operand in a let expression’s body

For example, in the expression (begin (+ 2 3) (- 2 3) (* 2 3)), (* 2 3) is a

tail call because it is the last operand expression to be evaluated.

Questions
2.1 For each of the following functions, identify whether it contains a recursive call in

a tail context. Also indicate if it uses a constant number of frames.

(define (question-a x)

(if (= x 0) 0

(+ x (question-a (- x 1)))))

(define (question-b x y)

(if (= x 0) y

(question-b (- x 1) (+ y x))))

(define (question-c x y)

(if (> x y)

(question-c (- y 1) x)

(question-c (+ x 10) y)))

(define (question-d n)

(if (question-d n)

(question-d (- n 1))

(question-d (+ n 10))))

(define (question-e n)

(cond ((= n 0) 1)

((question-e (- n 1)) (question-e (- n 2)))

(else (begin (print 2) (question-e (- n 3))))))



8 Streams and Tail Recursion

Writing tail recursive functions
Before we jump into questions, a quick tip for defining tail recursive functions is

to use helper functions. This is so that we can keep track of extra parameters

and make all recursive calls in tail context. Examples of such parameters include

something like total, counter, or result, like we saw in fact-tail.

2.2 Write a tail recursive function that returns the nth fibonacci number. We define

fib(0) = 0 and fib(1) = 1.

(define (fib n)

(define (fib-sofar ____________________________________________)

(if _________________________________________________________

_________________________________________________________

(fib-sofar ______________________________________________)

(fib-sofar ____________________________________________________))

2.3 Write a tail recursive function that takes in a Scheme list and returns the numerical

sum of all values in the list. You can assume that the list is well-formed and contains

only numbers (no nested lists).

(define (sum lst)

2.4 Write a tail recursive function, reverse, that takes in a Scheme list and returns a

reversed copy.

(define (reverse lst)


