CS 61A Interpreters and Macros
Summer 2018 Discussion 11: July 26, 2018

| Calculator

An interpreter is a program that understands other programs. Today, we will ex-

plore how to interpret a simple language that uses Scheme syntax called Calculator.

The Calculator language includes only the four basic arithmetic operations: +, —,
*, and /. These operations can be nested and can take any numbers of arguments.
A few examples of calculator expressions and their corresponding values are given

on the right.

Reading expressions

Recall that the reader component of an interpreter parses input strings and repre-
sents them as data structures in the implementing language. In this case, we need
to represent Calculator expressions as Python objects. To represent numbers, we
can just use Python numbers. To represent the names of the arithmetic procedures,

we can use Python strings (e.g. ’+’).

Call expressions are a bit more complicated. First, note that like Scheme call
expressions, call expressions in Calculator look just like Scheme lists. For example,

to construct the expression (+ 2 3) in Scheme, we would do the following:

scm> (cons '+ (cons 2 (cons 3 nil)))
(+23)

To represent Scheme lists in Python, we will use the Pair class. A Pair instance
holds exactly two elements. Accordingly, the Pair constructor takes in two argu-
ments, and to make a list we must nest calls to the constructor and pass in nil
as the second element of the last pair. Note that in our implementation, nil is
bound to a special user-defined object that represents an empty list, whereas nil

in Scheme is actually an empty list.

>>> Pair('+', Pair(2, Pair(3, nil)))
Pair('+', Pair(2, Pair(3, nil)))

Each Pair instance has two instance attributes: first and second, which are bound

to the first and second elements of the pair respectively.

>>> p = Pair('+', Pair(2, Pair(3, nil)))
>>> p.first

L

>>> p.second

Pair(2, Pair(3, nil))

>>> p.second.first

2

calc> (+ 2 2)
4

calc> (- 5)
-5

cale> (x (+ 1 2) (+ 2 3))
15

2 Interpreters and Macros
Here’s an implementation of what we described:

class Pair:

"""Represents the built-in pair data structure in Scheme."""
def __init__(self, first, second):

self.first = first

self.second = second

def map(self, fn):
"""Maps fn to every element in a well-formed list, returning a new
Pair.

>>> Pair(1, Pair(2, Pair(3, nil))).map(lambda x: x * x)

Pair(1, Pair(4, Pair(9, nil)))

assert isinstance(self.second, Pair) or self.second is nil, \
"Second element in pair must be another pair or nil"

return Pair(fn(self.first), self.second.map(fn))

def __getitem__(self, i):
"""Allows us to index into well-formed lists and treat well-formed
lists like Python iterables.

>>> p = Pair(1, Pair(2, Pair(3, nil)))

>>> p[1]

2

>>> list(p)

[1, 2, 3]

assert isinstance(self.second, Pair) or self.second is nil, \
"Second element in pair must be another pair or nil"

if i ==
return self.first

return self.second[i - 1]

def __repr__(self):
return 'Pair({}, {3})'.format(self.first, self.second)

class nil:
"""Represents the special empty pair nil in Scheme."""
def map(self, fn):
return nil
def __getitem__(self, i):
raise IndexError('Index out of range')
def __repr__(self):

return 'nil'’

nil = nil() # this hides the nil class *forever*

1.1

1.2

1.3

Interpreters and Macros 3

Questions

Write out constructor calls to create Pair objects representing the following Calcu-
lator expression.

>(/ 123)
>+ 12 34)

> (+ 1 (x23) 4)

Write out the Calculator expression with proper syntax that corresponds to the

following Pair constructor calls.

>>> Pair('+', Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

>>> Pair('+', Pair(1, Pair(Pair('*', Pair(2, Pair(3, nil))), nil)))

Answer the following questions about a Pair instance representing the Calculator
expression (+ 2 4 6 8).

i. Write out the Python expression that returns a Pair representing the given

expression.

ii. What is the operator of the call expression? Given that the Pair you con-
structed in the previous part was bound to the name p, how would you retrieve
the operator?

iii. What are the operands of the call expression? Given that the Pair you con-
structed in Part (i) was bound to the name p, how would you retrieve a list

containing all of the operands? How would you retrieve only the first operand?

4 Interpreters and Macros

Evaluation

The evaluation component of an interpreter determines the type of an expression

and executes corresponding evaluation rules.
Here are the evaluation rules for the three types of Calculator expressions:

1. Numbers are self-evaluating. For example, the numbers 3.14 and 165 just
evaluate to themselves.

2. Names are looked up in the OPERATORS dictionary. Each name (e.g. ’+’) is
bound to a corresponding function in Python that does the appropriate operation
on a list of numbers (e.g. sum).

3. Call expressions are evaluated the same way you've been doing them all

semester:
(1) Evaluate the operator, which evaluates to a function.
(2) Evaluate the operands from left to right.

(3) Apply the function to the value of the operands.

The function calc_eval takes in a Calculator expression represented in Python and
implements each of these rules:

def calc_eval(exp):

"""Evaluates a Calculator expression represented as a Pair."""
if isinstance(exp, Pair): # Call expressions

fn = calc_eval(exp.first)

args = list(exp.second.map(calc_eval))

return calc_apply(fn, args)

elif exp in OPERATORS: # Names
return OPERATORS[exp]

else: # Numbers
return exp

Note that calc_eval is recursive! In order to evaluate call expressions, we must call
calc_eval on the operator and each of the operands.

The apply step in the Calculator language is straight-forward, since we only have
primitive procedures. This step is more complex when it comes to applying Scheme

procedures, which may include user-defined procedures.

Given the Python function that implements the appropriate Calculator operation
and a Python list of numbers, the calc_apply function simply calls the function on

the arguments, and regular Python evalutation rules take place.

def calc_apply(fn, args):
"""Applies a Calculator operation to a list of numbers."""
return fn(args)

Interpreters and Macros 5

Questions

1.1 How many calls to calc_eval and calc_apply would it take to evaluate each of the

following Calculator expressions?

> (+2468)
> (+2 (x4 (-68))

1.2 Suppose we want to add handling for comparison operators >, <, and = as well as
and expressions to our Calculator interpreter. These should work the same way
they do in Scheme.

calc> (and (=1 1) 3)

3

cale> (and (+ 1 0) (<1 0) (/1 0))
#f

i. Are we able to handle expressions containing the comparison operators with

the existing implementation of calc_eval? Why or why not?

ii. Are we able to handle and expressions with the existing implementation of
calc_eval? Why or why not?

iii. Now, complete the implementation below to handle and expressions. You may
assume the conditional operators (e.g. <, >, =, etc) have already been imple-

mented for you.

def calc_eval(exp):
if isinstance(exp, Pair):
if . # and expressions

return eval_and(exp.second)

else: # Call expressions
return calc_apply(calc_eval(exp.first), list(exp.second.map(calc_eval)))
elif exp in OPERATORS: # Names
return OPERATORS[exp]
else: # Numbers
return exp

def eval_and(operands):

6 Interpreters and Macros

2 M&CI‘OS

So far we’ve been able to define our own procedures in Scheme using the define spe-
cial form. When we call these procedures, we have to follow the rules for evaluating

call expressions, which involve evaluating all the operands.

We know that special form expressions do not follow the evaluation rules of call
expressions. Instead, each special form has its own rules of evaluation, which may
include not evaluating all the operands. Wouldn't it be cool if we could define
our own special forms where we decide which operands are evaluated? Consider
the following example where we attempt to write a function that evaluates a given

expression twice:

scm> (define (twice f) (begin f f))
twice

scm> (twice (print 'woof))

woof

Since twice is a regular procedure, a call to twice will follow the same rules of
evaluation as regular call expressions; first we evaluate the operator and then we
evaluate the operands. That means that woof was printed when we evaluated the
operand (print ’woof). Inside the body of twice, the name f is bound to the
value undefined, so the expression (begin f f) does nothing at all!

The problem here is clear: we need to prevent the given expression from evaluating
until we're inside the body of the procedure. This is where the define-macro special

form, which has identical syntax to the regular define form, comes in:

scm> (define-macro (twice f) (list 'begin f f))
twice

define-macro allows us to define what’s known as a macro, which is simply a way
for us to combine unevaluated input expressions together into another expression.
When we call macros, the operands are not evaluated, but rather are treated as
Scheme data. This means that any operands that are call expressions or special

form expression are treated like lists.

If we call (twice (print ’woof)), f will actually be bound to the list (print
*woof) instead of the value undefined. Inside the body of define-macro, we can
insert these expressions into a larger Scheme expression. In our case, we would want

a begin expression that looks like the following:

(begin (print 'woof) (print 'woof))

As Scheme data, this expression is really just a list containing three elements: begin
and (print ’woof) twice, which is exactly what (list ’begin f f) returns. Now,
when we call twice, this list is evaluated as an expression and (print ’woof) is

evaluated twice.

scm> (twice (print 'woof))
woof
woof

2.1

Interpreters and Macros 7

Quasiquoting

Recall that the quote special form prevents the Scheme interpreter from executing
a following expression. We saw that this helps us create complex lists more easily
than repeatedly calling cons or trying to get the structure right with list. It seems
like this form would come in handy if we are trying to construct complex Scheme

expressions with many nested lists.
Consider that we rewrite the twice macro as follows:

(define-macro (twice f)
"(begin f f))

This seems like it would have the same effect, but since the quote form prevents
any evaluation, the resulting expression we create would actually be (begin f f),
which is not what we want.

The quasiquote allows us to construct literal lists in a similar way as quote, but

also lets us specify if anything within the operand should be evaluated.

At first glance, the quasiquote (which can be invoked with the backtick * or the

’

quasiquote special form) behaves exactly the same as ’ or quote. However, using
quasiquotes gives you the ability to unquote (which can be invoked with the comma
, or the unquote special form). This removes an expression from the quoted context,

evaluates it, and places it back in.

By combining quasiquotes and unquoting, we can often save ourselves a lot of trouble

when building macro expressions.
Here is how we could use quasiquoting to rewrite our previous example:

(define-macro (twice f)
*(begin ,f ,f))

Questions

Write a macro that takes an expression and returns a parameter-less lamba function

with the expression as its body

(define-macro (make-lambda expr)

scm> (make-lambda (print 'hi))

(lambda () (print (quote hi)))

scm> (make-lambda (/ 1 0))

(lambda () (/ 1 9))

scm> (define print-3 (make-lambda (print 3)))
print-3

scm> (print-3)

3

scm> (define a 1)
a

scm> '(cons a nil)
(cons a nil)

scm> “(cons a nil)
(cons a nil)
scm> “(cons ,a nil)
(cons 1 nil)

2.2

2.3

8 Interpreters and Macros

Write a macro that takes in two expressions and or’s them together (applying short-
circuiting rules). However, do this without using the or special form. You may also
assume the name v1 doesn’t appear anywhere outside of our macro. Fill in the
implementation below.

(define-macro (or-macro exprl expr2)

(let ((v1

(if

scm> (or-macro (print 'bork) (/ 1 0))
bork

scm> (or-macro (=1 0) (+ 1 2))

3

Consider a new special form, when, that has the following structure:

(when <condition>
<expri> <expr2> <expr3> ...)

If the condition is not false (a truthy expression), all the subsequent operands are
evaluated in order and the value of the last expression is returned. Otherwise, the

entire when expression evaluates to okay.

scm> (when (=1 0) (/1 @) 'error)

okay

scm> (when (= 1 1) (print 6) (print 1) 'a)
6

1

a

Create this new special form using a macro.

Recall that putting a dot before the last formal parameter allows you to pass any
number of arguments to a procedure, a list of which will be bound to the parameter,
similar to *args in Python.

(a) Fill in the skeleton below to implement this without using quasiquotes.

(define-macro (when condition . exprs)

(list 'if

))

)

(b) Now, implement the macro using quasiquotes.

(define-macro (when condition . exprs)

“(if

))

))

Interpreters and Macros 9

Extra questions

2.4 Write a macro that takes an expression and a number n and repeats the expression

2.5

n times. For example, (repeat-n expr 2) should behave the same as (twice expr).
Note that it’s possible to pass in a combination as the second argument (e.g. (+ 1
2)) as long as it evaluates to a number. Be sure that you evaluate this expression
in your macro so that you don’t treat it as a list.

Complete the implementation below, making use of the replicate function from
Discussion 7.

(define (replicate x n)
(if (= n 0) nil
(cons x (replicate x (- n 1)))))

(define-macro (repeat-n expr n)

scm> (repeat-n (print '(resistance is futile)) 3)

(resistance is futile)

(resistance is futile)

(resistance is futile)

scm> (repeat-n (print (+ 3 3)) (+ 1 1)) ; Pass a call expression in as n
6

6

Write a macro that takes in a call expression and strips out every other argument.
The first argument is kept, the second is removed, and so on. You may find it

helpful to write a helper function.

(define-macro (prune-expr expr)

scm> (prune-expr (+ 10))

10

scm> (prune-expr (+ 10 100))

10

scm> (prune-expr (+ 10 100 1000))

1010

scm> (prune-expr (prune-expr (+ 10 100) 'garbage))
10

